17 resultados para Manioc bran
em CentAUR: Central Archive University of Reading - UK
Resumo:
The prebiotic potential of oat samples was investigated by in vitro shaker-flask anaerobic fermentations with human fecal cultures. The oat bran fraction was obtained by debranning and was compared with other carbon sources such as whole oat flour, glucose, and fructo-oligosaccharide. The oat bran fraction showed a decrease in culturable anaerobes and clostridia and an increase in bifidobacteria and lactobacilli populations. A similar pattern was observed in fructo-oligosaccharide. Butyrate production was higher in oat bran compared to glucose and similar to that in fructo-oligosaccharide. Production of propionate was higher in the two oat media than in fructo-oligosaccharide and glucose, which can be used as energy source by the liver. This study suggests that the oat bran fraction obtained by debranning is digested by the gut ecosystem and increases the population of beneficial bacteria in the indigenous gut microbiota. This medium also provides an energy source preferred by colonocytes when it is metabolized by the gut flora.
Resumo:
The fermentability of rice bran (RB), alone or in combination with one of two probiotics, by canine faecal microbiota was evaluated in stirred, pH-controlled, anaerobic batch cultures. RB enhanced the levels of bacteria detected by probes Bif164 (bifidobacteria) and Lab158 (lactic acid bacteria); however, addition of the probiotics did not have a significant effect on the predominant microbial counts compared with RB alone. RB sustained levels of Bifidobacterium longum 05 throughout the fermentation; in contrast, Lactobacillus acidophilus 14 150B levels decreased significantly after 5-h fermentation. RB fermentation induced changes in the short-chain fatty acid (SCFA) profile. However, RB combined with probiotics did not alter the SCFA levels compared with RB alone. Denaturing gradient gel electrophoresis analysis of samples obtained at 24 h showed a treatment effect with RB, which was not observed in the RB plus probiotic systems. Overall, the negative controls displayed lower species richness than the treatment systems and their banding profiles were distinct. This study illustrates the ability of a common ingredient found in pet food to modulate the canine faecal microbiota and highlights that RB may be an economical alternative to prebiotics for use in dog food.
Resumo:
Bran is hygroscopic and competes actively for water with other key components in baked cereal products like starch and gluten. Thermogravimetric analysis (TGA) of flour–water mixtures enriched with bran at different incorporation levels was performed to characterise the release of compartmentalised water. TGA investigations showed that the presence of bran increased compartmentalised water, with the measurement of an increase of total water loss from 58.30 ± 1.93% for flour only systems to 71.80 ± 0.37% in formulations comprising 25% w/w bran. Deconvolution of TGA profiles showed an alteration of the distribution of free and bound water, and its interaction with starch and gluten, within the formulations. TGA profiles showed that water release from bran-enriched flour is a prolonged event with respect to the release from non-enriched flour, which suggests the possibility that bran may interrupt the normal characteristic processes of texture formation that occur in non-enriched products.
Resumo:
Objective: We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. Methods: This double-blind, randomized, controlled, crossover trial evaluated the effects of consuming AXOS at 0 (control), 2.2, or 4.8 g/d as part of ready-to-eat cereal for 3 wk in 55 healthy men and women. Fecal microbial levels, postprandial serum ferulic acid concentrations, and other physiologic parameters were assessed at the beginning and end of each condition. Results: The median bifidobacteria content of stool samples (log10/grams of dry weight [DW]) was found to be higher in the subjects consuming the 4.8-g/d dose (10.03) than in those consuming 2.2 g/d (9.93) and control (9.84, P < 0.001). No significant changes in the populations of other fecal microbes were observed, indicating a selective increase in fecal bifidobacteria. Postprandial ferulic acid was measured at 120 min at the start and end of each 3-wk treatment period in subjects at least 50 y old (n = 37) and increased in a dose-dependent manner (end-of-treatment values 0.007, 0.050, and 0.069 μg/mL for the control, AXOS 2.2 g/d, and AXOS 4.8 g/d conditions, respectively, P for trend < 0.001). Conclusion: These results indicate that AXOS has prebiotic properties, selectively increasing fecal bifidobacteria, and increases postprandial ferulic acid concentrations in a dose-dependent manner in healthy men and women.
Resumo:
Wheat bran, and especially wheat aleurone fraction, are concentrated sources of a wide range of components which may contribute to the health benefits associated with higher consumption of whole-grain foods. This study used NMR metabolomics to evaluate urine samples from baseline at one and two hours postprandially, following the consumption of minimally processed bran, aleurone or control by 14 participants (7 Females; 7 Males) in a randomized crossover trial. The methodology discriminated between the urinary responses of control, and bran and aleurone, but not between the two fractions. Compared to control, consumption of aleurone or bran led to significantly and substantially higher urinary concentrations of lactate, alanine, N-acetylaspartate acid and N-acetylaspartylglutamate and significantly and substantially lower urinary betaine concentrations at one and two hours postprandially. There were sex related differences in urinary metabolite profiles with generally higher hippurate and citrate and lower betaine in females compared to males. Overall, this postprandial study suggests that acute consumption of bran or aleurone is associated with a number of physiological effects that may impact on energy metabolism and which are consistent with longer term human and animal metabolomic studies that used whole-grain wheat diets or wheat fractions.
Resumo:
A model of sugarcane digestion was applied to indicate the suitability of various locally available supplements for enhancing milk production of Indian crossbred dairy cattle. Milk production was calculated according to simulated energy, lipogenic, glucogenic and aminogenic substrate availability. The model identified the most limiting substrate for milk production from different sugarcane-based diets. For sugarcane tops/urea fed alone, milk production was most limited by amino acid followed by long chain fatty acid availability. Among the protein-rich oil cake supplements at 100, 200 and 300 g supplement/kg total DM, cottonseed oil cake proved superior with a milk yield of 5.5, 7.3 and 8.3 kg/day, respectively. This was followed by mustard oil cake with 5.1, 6.5 and 7.6 kg/day, respectively. In the case of a protein-rich supplement (fish meal), milk yield was limited to 6.6 kg/day due to a shortage of long chain fatty acids. However, at 300 g of supplementation, energy became limiting, with a milk yield of 6.7 kg/day. Supplementation with rice bran and rice polishings at 100, 200 and 300 g restricted milk yield to 4.3, 4.9 and 5.5 and 4.5, 5.3 and 6.1 kg/day, respectively, and amino acids became the factor limiting milk production. The diet comprising basal sugarcane tops supplemented by leguminous fodder, dry fodder (e.g. rice or wheat straw) and concentrates at levels of 100, 200 and 300 g supplements/kg total diet DM proved to be the most balanced with a milk yield of 5.1, 6.7 and 9.0 kg/day, respectively.
Resumo:
In a glasshouse experiment using potted strawberry plants (cv. Cambridge Favourite) as hosts, the effect of selected fungal antagonists grown on 25 or 50 g of mushroom compost containing autoclaved mycelia of Agaricus bisporus, or wheat bran was evaluated against Armillaria mellea. Another glasshouse experiment tested the effect of application time of the antagonists in relation to inoculations with the pathogen. A significant interaction was found between the antagonists, substrates and dose rates. All the plants treated with Chaetomium olivaceum isolate Co on 50 g wheat bran survived until the end of the experiment which lasted 482 days, while none of them survived when this antagonist was added to the roots of the plants on 25 g wheat bran or 25 or 50 g mushroom compost. Dactylium dendroides isolate SP had a similar effect, although with a lower host survival rate of 33.3%. Trichoderma hamatum isolate Tham 1 and T. harzianum isolate Th23 protected 33.3% of the plants when added on 50 g and none when added on 25 g of either substrate, while 66.7% of the plants treated with T. harzianum isolate Th2 on 25 g, or T viride isolate TO on 50 g wheat bran, survived. Application of the antagonists on mushroom compost initially resulted in development of more leaves and healthier plants, but this effect was not sustained. Eventually, plants treated with the antagonists on wheat bran had significantly more leaves and higher health scores. The plants treated with isolate Th2 and inoculated with Armillaria at the same time had a survival rate of 66.7% for the duration of the experiment (475 days), while none of them survived that long when the antagonist and pathogen were applied with an interval of 85 days in either sequence. C. olivaceum isolate Co showed a protective effect only, as 66.7% of the plants survived when they were treated with the antagonist 85 days before inoculation with the pathogen, while none of them survived when the antagonist and pathogen were applied together or the infection preceded protection.
Resumo:
Several in vitro and in vivo experiments were conducted to develop an effective technique for culturing potential fungal antagonists (isolates of Trichoderma harzianum, Dactylium dendroides, Chaetomium olivaceum and one unidentified fungus) selected for activity against Armillaria mellea. The antagonists were inoculated onto (1) live spawn of the oyster mu shroom (Pleurotus ostreatus), (2) extra-moistened or sucrose-enriched mushroom composts containing living or autoclaved mycelia of P. ostreatus or Agaricus bisporus (button mushroom), (3) pasteurized compost with or without A. bisporus mycelium, wheat bran, wheat germ and (4) spent mushroom composts with living mycelia of A. bisporus, P. ostreatus or Lentinus edodes (the Shiitake mushroom). In one experiment, a representative antagonist (isolate Th2 of T. harzianum) was grown together with the A. bisporus mycelium, while in another one, the antagonist was first grown on wheat germ or wheat bran and then on mushroom compost with living mycelium of A. bisporus. Some of the carrier substrates were then added to the roots of potted strawberry plants in the glasshouse to evaluate their effectiveness against the disease. The antagonists failed to grow on the spawn of P. ostreatus even after reinoculations and prolonged incubation. Providing extra moisture or sucrose enrichment also did not improve the growth of Th2 on mushroom composts in the presence of living mycelia of A. bisporus or P. ostreatus. The antagonist, however, grew rapidly and extensively on mushroom compost with autoclaved mycelia, and also on wheat germ and wheat bran. Colonization of the substrates by the antagonist was positively correlated with its effectiveness in the glasshouse studies. Whereas only 33.3% of the inoculated control plants survived in one experiment monitored for 560 days, 100% survival was achieved when Th2 was applied on wheat germ or wheat bran. Growth of the antagonist alone on pasteurized or sterilized compost (without A. bisporus mycelia) and simultaneous growth of the antagonist and mushroom on pasteurized compost did not improve survival over the inoculated controls, but growth over mushroom compost with the living mycelium resulted in 50% survival rate. C. olivaceum isolate Co was the most effective, resulting in overall survival rate of 83.3% compared with only 8.3% for the inoculated and 100% for the uninoculated (healthy) controls. This antagonist gave the highest survival rate of 100% on spent mushroom compost with L. edodes. T harzianum isolate Th23, with 75% survival rate, was the most effective on spent mushroom compost with P. ostreatus, while D. dendroides isolate SP resulted in equal survival rates of 50% on all the three mushroom composts.
Resumo:
Epidemiological studies have shown an inverse association between dietary intake of whole grains and the risk of chronic disease. This may be related to the ability to mediate a prebiotic modulation of gut microbiota. However, no studies have been conducted on the microbiota modulatory capability of whole-grain (WG) cereals. In the present study, the impact of WG wheat on the human intestinal microbiota compared to wheat bran (WB) was determined. A double-blind, randomised, crossover study was carried out in thirty-one volunteers who were randomised into two groups and consumed daily 48g breakfast cereals, either WG or WB, in two 3-week study periods, separated by a 2-week washout period. Numbers of faecal bifidobacteria and lactobacilli (the target genera for prebiotic intake), were significantly higher upon WG ingestion compared with WB. Ingestion of both breakfast cereals resulted in a significant increase in ferulic acid concentrations in blood but no discernible difference in faeces or urine. No significant differences in faecal SCFA, fasting blood glucose, insulin, total cholesterol (TC), TAG or HDL-cholesterol were observed upon ingestion of WG compared with WB. However, a significant reduction in TC was observed in volunteers in the top quartile of TC concentrations upon ingestion of either cereal. No adverse intestinal symptoms were reported and WB ingestion increased stool frequency. Daily consumption of WG wheat exerted a pronounced prebiotic effect on the human gut microbiota composition. This prebiotic activity may contribute towards the beneficial physiological effects of WG wheat.
Resumo:
Four hull-less barley samples were milled on a Buhler MLU 202 laboratory mill and individual and combined milling fractions were characterized. The best milling performance was obtained when the samples were conditioned to 14.3% moisture. Yields were 37-48% for straight-run flour, 47-56% for shorts, and 5-8% for bran. The beta-glucan contents of the straight-run white flours were 1.6-2.1%, of which approximate to49% was water-extractable. The arabinoxylan contents were 1.2-1.5%, of which approximate to17% was water-extractable. Shorts and bran fractions contained more beta-glucan (4.2-5.8% and 3.0-4.7%, respectively) and arabinoxylan (6.1-7.7% and 8.1-11.8%, respectively) than the white flours. For those fractions, beta-glucan extractability was high (58.5 and 52.3%, respectively), whereas arabinoxylan extractability was very low (approximate to6.5 and 2.0%, respectively). The straight-run white flours had low alpha-amylase, beta-glucanase, and endoxylanase activities. The highest alpha-amylase activity was found in the shorts fractions and the highest beta-glucanase and endoxylanase activities were generally found in the bran fractions. Endoxylanase inhibitor activities were low in the white flours and highest in the shorts fractions. High flavanoid, tocopherol, and tocotrienol contents were found in bran and shorts fractions.
Resumo:
Acrylamide forms from free asparagine and sugars during cooking, and products derived from the grain of cereals, including rye, contribute a large proportion of total dietary intake. In this study, free amino acid and sugar concentrations were measured in the grain of a range of rye varieties grown at locations in Hungary, France, Poland, and the United Kingdom and harvested in 2005, 2006, and 2007. Genetic and environmental (location and harvest year) effects on the levels of acrylamide precursors were assessed. The data showed free asparagine concentration to be the main determinant of acrylamide formation in heated rye flour, as it is in wheat. However, in contrast to wheat, sugar, particularly sucrose, concentration also correlated both with asparagine concentration and with acrylamide formed. Free asparagine concentration was shown to be under genetic (G), environmental (E), and integrated (G × E) control. The same was true for glucose, whereas maltose and fructose were affected mainly by environmental factors and sucrose was largely under genetic control. The ratio of variation due to varieties (genotype) to the total variation (a measure of heritability) for free asparagine concentration in the grain was 23%. Free asparagine concentration was closely associated with bran yield, whereas sugar concentration was associated with low Hagberg falling number. Rye grain was found to contain much higher concentrations of free proline than wheat grain, and less acrylamide formed per unit of asparagine in rye than in wheat flour.
Resumo:
BACKGROUND: In 1997, the US Food and Drug Administration passed a unique ruling that allowed oat bran to be registered as the first cholesterol-reducing food at a dosage of 3 g beta-glucan/d. OBJECTIVE: The effects of a low dose of oat bran in the background diet only were investigated in volunteers with mild-to-moderate hyperlipidemia. DESIGN: The study was a double-blind, placebo-controlled, randomized, parallel study. Sixty-two healthy men (n = 31) and women (n = 31) were randomly allocated to consume either 20 g oat bran concentrate (OBC; containing 3 g beta-glucan) or 20 g wheat bran (control) daily for 8 wk. Fasting blood samples were collected at weeks -1, 0, 4, 8, and 12. A subgroup (n = 17) was studied postprandially after consumption of 2 meals (containing no OBC or wheat bran) at baseline and after supplementation. Fasting plasma samples were analyzed for total cholesterol, HDL cholesterol, triacylglycerol, glucose, and insulin. LDL cholesterol was measured by using the Friedewald formula. The postprandial samples were anlayzed for triacylglycerol, glucose, and insulin. RESULTS: No significant difference was observed in fasting plasma cholesterol, LDL cholesterol, glucose, or insulin between the OBC and wheat-bran groups. HDL-cholesterol concentrations fell significantly from weeks 0 to 8 in the OBC group (P = 0.05). There was a significant increase in fasting glucose concentrations after both OBC (P = 0.03) and wheat-bran (P = 0.02) consumption. No significant difference was found between the OBC and wheat-bran groups in any of the postprandial variables measured. CONCLUSIONS: A low dosage of beta-glucan (3 g/d) did not significantly reduce total cholesterol or LDL cholesterol in volunteers with plasma cholesterol concentrations representative of a middle-aged UK population.
Resumo:
Phytate and mineral cations are both considered as important dietary factors for inhibiting the crystallisation of calcium oxalate kidney stones in susceptible individuals. In this paper, the phytate and mineral composition of whole bran cereals (wheat, barley and oat) and legumes were determined together with their soluble and insoluble oxalate concentrations in order to investigate the effects on oxalate solubility. The oat bran sample had the highest soluble oxalate concentration at 79 ± 1.3 mg/100 g, while total and soluble oxalate concentrations in the food samples studied range from 33 to 199 mg/100 g and 14 to 79 mg/100 g, respectively. The phytate concentration was in the range from 227 to 4393 mg/100 g and the concentrations of cations were in the range 54–70 mg/100 g for calcium, 75–398 mg/100 g for magnesium, 244–1529 mg/100 g for potassium and 4–11 mg/100 g for iron. Soluble oxalate concentration did not increase in proportion to total oxalate, and the phytate concentration in all foods was sufficient to contribute to an increase in soluble oxalate concentration by binding calcium.
Resumo:
We present a simple sieving methodology to aid the recovery of large cultigen pollen grains, such as maize (Zea mays L.), manioc (Manihot esculenta Crantz), and sweet potato (Ipomoea batatas L.), among others, for the detection of food production using fossil pollen analysis of lake sediments in the tropical Americas. The new methodology was tested on three large study lakes located next to known and/or excavated pre-Columbian archaeological sites in South and Central America. Five paired samples, one treated by sieving, the other prepared using standard methodology, were compared for each of the three sites. Using the new methodology, chemically digested sediment samples were passed through a 53 µm sieve, and the residue was retained, mounted in silicone oil, and counted for large cultigen pollen grains. The filtrate was mounted and analysed for pollen according to standard palynological procedures. Zea mays (L.) was recovered from the sediments of all three study lakes using the sieving technique, where no cultigen pollen had been previously recorded using the standard methodology. Confidence intervals demonstrate there is no significant difference in pollen assemblages between the sieved versus unsieved samples. Equal numbers of exotic Lycopodium spores added to both the filtrate and residue of the sieved samples allow for direct comparison of cultigen pollen abundance with the standard terrestrial pollen count. Our technique enables the isolation and rapid scanning for maize and other cultigen pollen in lake sediments, which, in conjunction with charcoal and pollen records, is key to determining land-use patterns and the environmental impact of pre-Columbian societies.
Resumo:
Although sparsely populated today, the Llanos de Mojos, Bolivia, sustained large sedentary societies in the Late Holocene (ca. 500 to 1400 AD). In order to gain insight into the subsistence of these people, we undertook macrobotanical and phytolith analyses of sediment samples, and starch grain and phytolith analyses of artifact residues, from four large habitation sites within this region. Macrobotanical remains show the presence of maize (Zea mays), squash (Cucurbita sp.), peanut (Arachis hypogaea), cotton (Gossypium sp.), and palm fruits (Arecaceae). Microbotanical results confirm the widespread use of maize at all sites, along with manioc (Manihot esculenta), squash, and yam (Dioscorea sp.). These integrated results present the first comprehensive archaeobotanical evidence of the diversity of plants cultivated, processed, and consumed, by the pre-Hispanic inhabitants of the Amazonian lowlands of Bolivia.