21 resultados para Mammary neoplasi
em CentAUR: Central Archive University of Reading - UK
Resumo:
Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes. Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.
Resumo:
Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes, Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.
Resumo:
Epidemiological studies have shown that ingestion of isoflavone-rich soy products is associated with a reduced risk for the development of breast cancer. In the present study, we investigated the hypothesis that genistein modulates the expression of glutathione S-transferases (GSTs) in human breast cells, thus conferring protection towards genotoxic carcinogens which are GST substrates. Our approach was to use human mammary cell lines MCF-10A and MCF-7 as models for non-neoplastic and neoplastic epithelial breast cells, respectively. MCF-10A cells expressed hGSTA1/2, hGSTA4-4, hGSTM1-1 and hGSTP1-1 proteins, but not hGSTM2-2. In contrast, MCF-7 cells only marginally expressed hGSTA1/2, hGSTA4-4 and hGSTM1-1. Concordant to the protein expression, the hGSTA4 and hGSTP1 mRNA expression was higher in the non-neoplastic cell line. Exposure to genistein significantly increased hGSTP1 mRNA (2.3-fold), hGSTP1-1 protein levels (3.1-fold), GST catalytic activity (4.7-fold) and intracellular glutathione concentrations (1.4-fold) in MCF-10A cells, whereas no effects were observed on GST expression or glutathione concentrations in MCF-7 cells. Preincubation of MCF-10A cells with genistein decreased the extent of DNA damage by 4-hydroxy-2-nonenal (150 mu M) and benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (50 mu M), compounds readily detoxified by hGSTA4-4 and hGSTP1-1. In conclusion, genistein pretreatment protects non-neoplastic mammary cells from certain carcinogens that are detoxified by GSTs, suggesting that dietary-mediated induction of GSTs may be a mechanism contributing to prevention against genotoxic injury in the aetiology of breast cancer.
Resumo:
This study has investigated the influence of dietary fatty acid composition on mammary tumour incidence in N-ethyl-N-nitrosourea (ENU)-treated rats and has compared the susceptibility to dietary fatty acid modification of the membrane phospholipids phosphatidyliuositol (PI) and phosphatidylethanolamine (PE) from normal and tumour tissue of rat mammary gland. The incidence of mammary tumours was significantly lower in fish oil- (29%), compared with olive oil- (75%; P < 0.04) but not maize oil- (63%; P < 0.1) fed animals. No differences in PI fatty acid composition were found in normal or tumour tissue between rats fed on maize oil, olive oil or fish oil in diets from weaning. When normal and tumour tissue PI fatty acids were compared, significantly higher amounts of stearic acid (18:O) were found in tumour than normal tissue in rats given olive oil (P < 0.05). A similar trend was found in animals fed on maize oil, although differences between normal and tumour tissue did not reach a level of statistical significance (P < 0.1). In mammary PE, maize oil-fed control animals had significantly higher levels of linoleic acid (18:2n-6) than either olive oil- or fish oil-fed animals (P < 0.05, both cases) and levels of arachidonic acid were also higher in maize oil- compared with fish oil-fed animals (P < 0.05). In tumourbearing animals no differences in PE fatty acid composition were found between the three dietary groups. When normal and tumour tissue PE fatty acids were compared, significantly lower amounts of liuoleic acid (18:2n-6; P < 0.01) and significantly greater amounts of arachidonic acid (20:4n-6; P < 0.05) were found in tumour than normal tissue of rats fed on maize oil. The present study shows that the fatty acid composition of PI from both normal and tumour tissue of the mammary gland is resistant to dietary fatty acid modification. The PE fraction is more susceptible to dietary modification and in this fraction there is evidence of increased conversion of linoleic acid to arachidonic acid in tumour compared with normal tissue. Lower tumour incidence rates in rats given fish oils may in part be due to alteration in prostanoid metabolism secondary to displacement of arachidonic acid by eicosapentaenoic acid, but PE rather than PI would appear to be the most likely locus for diet-induced alteration in prostanoid synthesis in this tissue. Effects of dietary fatty acids other than on the balance of n-6 and n-3 fatty acids, and on prostanoid metabolism, should also be considered. The significance of increased stearic acid content of PI in tumours of olive oil-fed animals and the possible influence of dietary fatty acids on the capacity for stearic acid accumulation requires further study.
Resumo:
The present study investigated the effect of feeding maize-oil, olive-oil and fish-oil diets, from weaning to adulthood, on rat mammary tissue and erythrocyte phospholipid fatty acid compositions. Effects of diet on the relative proportions of membrane phospholipids in the two tissues were also investigated. Mammary tissue phosphatidylinositol (PI) fatty acids were unaltered by diet, but differences in phosphatidylethanolamine (PE) and, to a lesser extent, phosphatidylcholine (PC) fractions were found between animals fed on different diets from weaning. Differences observed were those expected from the dietary fatty acids fed; n-6 fatty acids were found in greatest amounts in maize-oil-fed rats, n-9 in olive-oil-fed rats, and n-3 in fish-oil-fed rats. In erythrocytes the relative susceptibilities of the individual phospholipids to dietary modification were: PE > PC > PI, but enrichment with n-9 and n-3 fatty acids was not observed in olive-oil- and fish-oil-fed animals and in PC and PE significantly greater amounts of saturated fatty acids were found when animals fed on olive oil or fish oil were compared with maize-oil-fed animals. The polyunsaturated:saturated fatty acid ratios of PE and PC fractions were significantly lower in olive-oil- and fish-oil-fed animals. No differences in the relative proportions of phospholipid classes were found between the three dietary groups. It is suggested that differences in erythrocyte fatty acid composition may reflect dietary-induced changes in membrane cholesterol content and may form part of a homoeostatic response the aim of which is to maintain normal erythrocyte membrane fluidity. The resistance of mammary tissue PI fatty acids to dietary modification suggests that alteration of PI fatty acids is unlikely to underlie effects of dietary fat on mammary tumour incidence rates.
Resumo:
The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3 × 3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.
Resumo:
An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.
Resumo:
Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet those requirements.
Resumo:
A more complete understanding of amino acid ( AA) metabolism by the various tissues of the body is required to improve upon current systems for predicting the use of absorbed AA. The objective of this work was to construct and parameterize a model of net removal of AA by the portal-drained viscera (PDV). Six cows were prepared with arterial, portal, and hepatic catheters and infused abomasally with 0, 200, 400, or 600 g of casein daily. Casein infusion increased milk yield quadratically and tended to increase milk protein yield quadratically. Arterial concentrations of a number of essential AA increased linearly with respect to infusion amount. When infused casein was assumed to have a true digestion coefficient of 0.95, the minimum likely true digestion coefficient for noninfused duodenal protein was found to be 0.80. Net PDV use of AA appeared to be linearly related to total supply (arterial plus absorption), and extraction percentages ranged from 0.5 to 7.25% for essential AA. Prediction errors for portal vein AA concentrations ranged from 4 to 9% of the observed mean concentrations. Removal of AA by PDV represented approximately 33% of total postabsorptive catabolic use, including use during absorption but excluding use for milk protein synthesis, and was apparently adequate to support endogenous N losses in feces of 18.4 g/d. As 69% of this use was from arterial blood, increased PDV catabolism of AA in part represents increased absorption of AA in excess of amounts required by other body tissues. Based on the present model, increased anabolic use of AA in the mammary and other tissues would reduce the catabolic use of AA by the PDV.
Resumo:
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.
Resumo:
As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Here, we report the identification of a metastasis promoting factor by a forward genetic screen in mice. A retroviral cDNA library was introduced into the nonmetastatic cancer cell line 168FARN, which was then orthotopically transplanted into mouse mammary fat pads, followed by selection for cells that metastasize to the lung. The genes encoding the disulfide isomerase ERp5 and beta-catenin were found to promote breast cancer invasion and metastasis. Disulfide isomerases (thiol isomerases), which catalyze disulfide bond formation, reduction, and isomerization, have not previously been implicated in cancer cell signaling and tumor metastasis. Overexpression of ERp5 promotes both in vitro migration and invasion and in vivo metastasis of breast cancer cells. These effects were shown to involve activation of ErbB2 and phosphoinositicle 3-kinase (PI3K) pathways through dimerization of ErbB2. Activation of ErbB2 and PI3K subsequently stimulates RhoA and beta-catenin, which mediate the migration and invasion of tumor cells. Inhibition of ErbB2 and PI3K reverses the phenotypes induced by ERp5. Finally, ERp5 was shown to be up-regulated in human surgical samples of invasive breast cancers. These data identify a link between disulfide isomerases and tumor development, and provide a mechanism that modulates ErbB2 and PI3K signaling in the promotion of cancer progression.