7 resultados para Mammals Queensland Brisbane Forest Park
em CentAUR: Central Archive University of Reading - UK
Resumo:
Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.
Resumo:
Patterns of forest cover and forest degradation determine the size and types of ecosystem services forests provide. Particularly in low-income countries, nontimber forest product (NTFP) extraction by rural people, which provides important resources and income to the rural poor, contributes to the level and pattern of forest degradation. Although recent policy, particularly in Africa, emphasizes forest degradation, relatively little research describes the spatial aspects of NTFP collection that lead to spatial degradation patterns. This paper reviews both the spatial empirical work on NTFP extraction and related forest degradation patterns, and spatial models of behavior of rural people who extract NTFPs from forest. Despite the impact of rural people's behavior on resulting quantities and patterns of forest resources, spatial–temporal models/patterns rarely inform park siting and sizing decisions, econometric assessments of park effectiveness, development projects to support conservation, or REDD protocols. Using the literature review as a lens, we discuss the models' implications for these policies with particular emphasis on effective conservation spending and leakage.
The impact of buffer zone size and management on illegal extraction, park protection and enforcement
Resumo:
Many protected areas or parks in developing countries have buffer zones at their boundaries to achieve the dual goals of protecting park resources and providing resource benefits to neighbouring people. Despite the prevalence of these zoning policies, few behavioural models of people’s buffer zone use inform the sizing and management of those zones. This paper uses a spatially explicit resource extraction model to examine the impact of buffer zone size and management on extraction by local people, both legal and illegal, and the impact of that extraction on forest quality in the park’s core and buffer zone. The results demonstrate trade-offs between the level of enforcement, the size of a buffer zone, and the amount of illegal extraction in the park; and describe implications for “enrichment” of buffer zones and evaluating patterns of forest degradation.
Resumo:
Using a model calibrated to Khao Yai National Park in Thailand, this paper highlights the importance of generating explicitly spatial and temporal data for developing management plans for tropical protected forests. Spatial and temporal cost-benefit analysis should account for the interactions between different land uses – such as the benefits of contiguous areas of preserved land and edge effects – and the realities of villagers living near forests who rely on extracted resources. By taking a temporal perspective, this paper provides a rare empirical assessment of the importance of quasi-option values when determining optimal management plans.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.