15 resultados para Malocclusion, Angle Class III
em CentAUR: Central Archive University of Reading - UK
Resumo:
Mecoprop-p [(R)-2-(4-chloro-2-methylphenoxy) propanoic acid) is widely used in agriculture and poses an environmental concern because of its susceptibility to leach from soil to water. We investigated the effect of soil depth on mecoprop-p biodegradation and its relationship with the number and diversity of tfdA related genes, which are the most widely known genes involved in degradation of the phenoxyalkanoic acid group of herbicides by bacteria. Mecoprop-p half-life (DT50) was approximately 12 days in soil sampled from <30 cm depth, and increased progressively with soil depth, reaching over 84 days at 70–80 cm. In sub-soil there was a lag period of between 23 and 34 days prior to a phase of rapid degradation. No lag phase occurred in top-soil samples prior to the onset of degradation. The maximum degradation rate was the same in top-soil and sub-soil samples. Although diverse tfdAα and tfdA genes were present prior to mecoprop-p degradation, real time PCR revealed that degradation was associated with proliferation of tfdA genes. The number of tfdA genes and the most probable number of mecoprop-p degrading organisms in soil prior to mecoprop-p addition were below the limit of quantification and detection respectively. Melting curves from the real time PCR analysis showed that prior to mecoprop-p degradation both class I and class III tfdA genes were present in top- and sub-soil samples. However at all soil depths only tfdA class III genes proliferated during degradation. Denaturing gradient gel electrophoresis confirmed that class III tfdA genes were associated with mecoprop-p degradation. Degradation was not associated with the induction of novel tfdA genes in top- or sub-soil samples, and there were no apparent differences in tfdA gene diversity with soil depth prior to or following degradation.
Resumo:
Of the three classes of true phosphoinositide (PI) 3-kinases, the class II subdivision, which consists of three isoforms, PI3K-C2alpha, PI3K-C2beta and PI3K-C2gamma, is the least well understood. There are a number of reasons for this. This class of PI 3-kinase was identified exclusively by PCR and homology cloning approaches and not on the basis of cellular function. Like class I PI 3-kinases, class II PI 3-kinases are activated by diverse receptor types. To complicate the elucidation of class II PI 3-kinase function further, their in vitro substrate specificity is intermediate between the receptor activated class I PI 3-kinases and the housekeeping class III PI 3-kinase. The class II PI 3-kinases are inhibited by the two commonly used PI 3-kinase family selective inhibitors, wortmannin and LY294002, and there are no widely available, specific inhibitors for the individual classes or isoforms. Here the current state of understanding of class II PI 3-kinase function is reviewed, followed by an appraisal as to whether there is enough evidence to suggest that pharmaceutical companies, who are currently targeting the class I PI 3-kinases in an attempt to generate anticancer agents, should also consider targeting the class II PI 3-kinases.
Resumo:
Viral fusion proteins mediate the merger of host and viral membranes during cell entry for all enveloped viruses. Baculovirus glycoprotein gp64 (gp64) is unusual in promoting entry into both insect and mammalian cells and is distinct from established class I and class II fusion proteins. We report the crystal structure of its postfusion form, which explains a number of gp64's biological properties including its cellular promiscuity, identifies the fusion peptides and shows it to be the third representative of a new class (III) of fusion proteins with unexpected structural homology with vesicular stomatitis virus G and herpes simplex virus type 1 gB proteins. We show that domains of class III proteins have counterparts in both class I and II proteins, suggesting that all these viral fusion machines are structurally more related than previously thought.
Resumo:
To investigate the consequences of cyclometalation for electronic communication in dinuclear ruthenium complexes, a series of 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) bridged diruthenium complexes was prepared and studied. These complexes have a central tppz ligand bridging via nitrogen-to-ruthenium coordination bonds, while each ruthenium atom also binds either a monoanionic, N,C,N'-terdentate 2,6-bis(2'-pyridyl)phenyl (R-N boolean AND C boolean AND N) ligand or a 2,2':6',2 ''-terpyridine (tpy) ligand. The N,C,N'-, that is, biscyclometalation, instead of the latter N,N', N ''-bonding motif significantly changes the electronic properties of the resulting complexes. Starting from well-known [{Ru(tpy)}(2)(mu-tppz)](4+) (tpy = 2,2':2 '',6-terpyridine) ([3](4+)) as a model compound, the complexes [{Ru(R-N boolean AND C boolean AND N)}(mu-tppz){Ru(tpy)}](3+) (R-N boolean AND C(H)boolean AND N = 4-R-1,3-dipyridylbenzene, R = H ([4a](3+)), CO2Me ([4b](3+))), and [{Ru(R-N boolean AND C boolean AND N)}(2)(mu-tppz)](2+), (R = H ([5a](2+)), CO2Me ([5b](2+))) were prepared with one or two N,C,N'-cyclometalated terminal ligands. The oxidation and reduction potentials of cyclometalated [4](3+) and [5](2+) are shifted negatively compared to non-cyclometalated [3](4+), the oxidation processes being affected more significantly. Compared to [3](4+), the electronic spectra of [5](2+) display large bathochromic shifts of the main MLCT transitions in the visible spectral region with low-energy absorptions tailing down to the NIR region. One-electron oxidation of [3](4+) and [5](2+) gives rise to low-energy absorption bands. The comproportionation constants and NIR band shape correspond to delocalized Robin-Day class III compounds. Complexes [4a](3+) (R = H) and [4b](3+) (R = CO2Me) also exhibit strong electronic communication, and notwithstanding the large redox-asymmetry the visible metal-to-ligand charge-transfer absorption is assigned to originate from both metal centers. The potential of the first, ruthenium-based, reversible oxidation process is strongly negatively shifted. On the contrary, the second oxidation is irreversible and cyclometalated ligand-based. Upon one-electron oxidation, a weak and low-energy absorption arises.
Resumo:
The dinuclear complex [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)(2)-3,5](2)(2-)) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)(2)-2,6](-)) followed by a reaction with 2,2':6',2 ''-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 are compared with those of the closely related [(tpy)Ru-II(NCN-NCN)Ru-II(tpy)](PF6)(2) (NCN-NCN = [C6H2(CH2- NMe2)(2)-3,5](2)(2-)) obtained by two-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4). The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4) and one-electron oxidation of [(tpy)Ru-II(PCP-PCP)RUII(tpy)]Cl-2 yielded the mixed-valence species [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) and [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+), respectively. The comproportionation equilibrium constants K-c (900 and 748 for [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](4+) and [(tpy)Ru-II(PCP-PCP)RUII(tpy)](2+), respectively) determined from cyclic voltammetric data reveal comparable stability of the [Ru-III-Ru-II] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+) and [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups
Resumo:
A spontaneous high hydrostatic pressure (HHP)-tolerant mutant of Listeria monocytogenes ScottA, named AK01, was isolated previously. This mutant was immotile and showed increased resistance to heat, acid and H2O2 compared with the wild type (wt) (Karatzas, K.A.G. and Bennik, M.H.J. 2002 Appl Environ Microbiol 68: 3183–3189). In this study, we conclusively linked the increased HHP and stress tolerance of strain AK01 to a single codon deletion in ctsR (class three stress gene repressor) in a region encoding a highly conserved glycine repeat. CtsR negatively regulates the expression of the clp genes, including clpP, clpE and the clpC operon (encompassing ctsR itself), which belong to the class III heat shock genes. Allelic replacement of the ctsR gene in the wt background with the mutant ctsR gene, designated ctsRΔGly, rendered mutants with phenotypes and protein expression profiles identical to those of strain AK01. The expression levels of CtsR, ClpC and ClpP proteins were significantly higher in ctsRΔGly mutants than in the wt strain, indicative of the CtsRΔGly protein being inactive. Further evidence that the CtsRΔGly protein lacks its repressor function came from the finding that the Clp proteins in the mutant were not further induced upon heat shock, and that HHP tolerance of a ctsR deletion strain was as high as that of a ctsRΔGly mutant. The high HHP tolerance possibly results from the increased expression of the clp genes in the absence of (active) CtsR repressor. Importantly, the strains expressing CtsRΔGly show significantly attenuated virulence compared with the wt strain; however, no indication of disregulation of PrfA in the mutant strains was found. Our data highlight an important regulatory role of the glycine-rich region of CtsR in stress resistance and virulence.
Resumo:
The dinuclear complex [{Ru(CN)4}2(μ-bppz)]4− shows a strongly solvent-dependent metal–metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH2Cl2. In CH2Cl2 the separation between the successive Ru(II)/Ru(III) redox couples is 350 mVand the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mVand the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH2Cl2 or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH2Cl2 and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCTexcited state, which is formulated as RuIII(bppz˙−)RuII and can therefore be considered as a mixed-valence Ru(II)/Ru(III) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(II) and Ru(III) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙− which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(II)/Ru(II), Ru(II)/Ru(III) and Ru(III)/Ru(III) calculations in both water and CH2Cl2 well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)4(μ-bppz)]2– and [{Ru(CN)4}2(μ-bppz)]4− very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH2Cl2.
Resumo:
The synthesis of the first example of a new class of tetradentate reagents for the efficient separation of americium(Ill) and europium(111) is reported together with the structure of the complex formed with europium(III), (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.
Resumo:
This paper deals with second-generation Barbadians or 'Bajan-Brits', who have decided to,return' to the birthplace of their parents, focusing on their reactions to matters relating to race relations and racialised identities. The importance of race and the operation of the 'colour-class' system in the Caribbean are established at the outset. Based on fifty-two qualitative in-depth interviews, the paper initially considers the positive things that the second-generation migrants report about living in a majority black country and the salience of such racial affirmation as part of their migration process. The paper then presents an analysis of the narratives provided by the Bajan-Brits concerning their reactions to issues relating to race relations in Barbadian society. The impressions of the young returnees provide clear commentaries on what are regarded as (i) the 'acceptance of white hegemony' within Barbadian society, (ii) the occurrence of de facto 'racial segregation, (iii) perceptions of the 'existence of apartheid, and (iv) 'the continuation of slavery'. The account then turns to the contemporary operation of the colour-class system. It is concluded that, despite academic arguments that the colour-class dimension has to be put to one side as the principal dimension of social stratification in the contemporary Caribbean, the second-generation migrants are acutely aware of the continued existence and salience of such gradations within society. Thus, the analysis not only serves to emphasise the continued importance of racial-based stratification in the contemporary Caribbean, but also speaks of the 'hybrid' and 'in-between' racialised identities of the second-generation migrants.
Resumo:
Newly observed data on the rotational constants of carbon suboxide in excited vibrational states of the low-wavenumber bending vibration ν7 have been successfully interpreted in terms of the two-dimensional anharmonic oscillator wavefunctions associated with this vibration. By combining these results with published infrared and Raman spectra the vibrational assignment has been extended and a refined bending potential for ν7 has been derived: this has a minimum at a bending angle of about 24° at the central C atom, with an energy maximum at the linear configuration some 23 cm−1 above the minimum. From similar data on the combination and hot bands of ν7 with ν4 (1587 cm−1) and ν2 (786 cm−1) the effective ν7 bending potential has also been determined in the one-quantum excited states of ν4 and ν2. The effective ν7 potential shows significant changes from the ground vibrational state; the central hump in the ν7 potential surface is increased to about 50 cm−1 in the v4 = 1 state, and decreased to about 1 cm−1 in the v2 = 1 state. In the light of these results vibrational assignments are suggested for most of the observed bands in the infrared and Raman spectra of C3O2.
Resumo:
The structural and reactive properties of the acetyl-protected "one-legged" manganese porphyrin [SAc]P-Mn(III)Cl on Ag(100) have been studied by NEXAFS, synchrotron XPS and STM Spontaneous surface-mediated deprotection occurs at 300 K accompanied by spreading of the resulting thio-tethered porphyrin across the metal surface Loss of the axial chlorine ligand occurs at 498 K, without any demetalation of the macrocycle, leaving the Mn center in a low co-ordination state At low coverages the macrocycle is markedly tilted toward the silver surface, as is the phenyl group that forms part of the tethering "leg". In the monolayer region a striking transition occurs whereby the molecule rolls over, preserving the tilt angle of the phenyl group, strongly increasing that of the macrocycle, decreasing the apparent height of the molecule and decreasing its footprint, thus enabling closer packing These findings are in marked contrast with those previously reported for the corresponding more rigidly bound four-legged porphyrin [Turner, M., Vaughan, O. P. H., Kyriakou, G., Watson, D. J., Scherer, L. J; Davidson, G J. E, Sanders, J. K. M.; Lambert, R. M J. Am. Chem Soc 2009, 131, 1910] suggesting that the physicochemical :)properties and potential applications of these versatile systems should be strongly dependent on the mode of tethering to the surface.
Resumo:
The reaction of the fulvalene titanium(III) hydride [{Ti(η5-C5H5)(μ-H)}2(μ-η5-η5-C10H8)] (1) with chlorine leads to [{Ti(η5-C5H5)(μ-Cl)}2(μ-η5-η5-C10H8)] (3) and [{Ti(η5-C5H5)Cl2}2(μ-η5-η5-C10H8)] (4). The reaction of 3 with azobenzene, in wet toluene, gives [{Ti(η5-C5H5)Cl}2(μ-O)(μ-η5-η5-C10H8)] (5) and 1,2-diphenyl hydrazine. The alkylation of 4 and the analogous zirconium complex [{Zr(η5-C5H55)Cl2}2(μ-η5-η5-C10H8)] (2) with LiCH2SiMe3 or LiCH3 permits isolation of the tetraalkyl derivatives [{M(η5-C5H5)(CH2SiMe3)2}2(μ-η5-η5-C10H8)] (M Ti (6); Zr (8)) and [{Ti(η5-C5H5)(CH3)2}2(μ-η5-η5C10H8)] (7). All the new fulvalene compounds were characterized by IR, and 1H and 13C NMR spectroscope, and mass spectra and 5 by X-ray diffraction. The structure of 5 is very similar to that of the comparable TiIV compound [{Ti(η5-C5H5)2Cl}2(μ-O)] except for the smaller TiOTi angle (159.4° against 173.81°) and a significant deviation from linearity.
Resumo:
Rigorous upper bounds are derived on the saturation amplitude of baroclinic instability in the two-layer model. The bounds apply to the eddy energy and are obtained by appealing to a finite amplitude conservation law for the disturbance pseudoenergy. These bounds are to be distinguished from those derived in Part I of this study, which employed a pseudomomentum conservation law and provided bounds on the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. Bounds on the eddy energy are worked out for a general class of unstable westerly jets. In the special case of the Phillips model of baroclinic instability, and in the limit of infinitesimal initial eddy amplitude, the bound states that the eddy energy cannot exceed ϵβ2/6F where ϵ = (U − Ucrit)/Ucrit is the relative supercriticality. This bound captures the essential dynamical scalings (i.e., the dependence on ϵ, β, and F) of the saturation amplitudes predicted by weakly nonlinear theory, as well as exhibiting remarkable quantitative agreement with those predictions, and is also consistent with heuristic baroclinic adjustment estimates.