9 resultados para Maintenance models
em CentAUR: Central Archive University of Reading - UK
Resumo:
In real-world environments it is usually difficult to specify the quality of a preventive maintenance (PM) action precisely. This uncertainty makes it problematic to optimise maintenance policy.-This problem is tackled in this paper by assuming that the-quality of a PM action is a random variable following a probability distribution. Two frequently studied PM models, a failure rate PM model and an age reduction PM model, are investigated. The optimal PM policies are presented and optimised. Numerical examples are also given.
Resumo:
The results from three types of study with broilers, namely nitrogen (N) balance, bioassays and growth experiments, provided the data used herein. Sets of data on N balance and protein accretion (bioassay studies) were used to assess the ability of the monomolecular equation to describe the relationship between (i) N balance and amino acid (AA) intake and (ii) protein accretion and AA intake. The model estimated the levels of isoleucine, lysine, valine, threonine, methionine, total sulphur AAs and tryptophan resulting in zero balance to be 58, 59, 80, 96, 23, 85 and 32 mg/kg live weight (LW)/day, respectively. These estimates show good agreement with those obtained in previous studies. For the growth experiments, four models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine crude protein (CP) intake at maintenance and efficiency of utilization of CP intake for producing gain. They were: a straight line, two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola) and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The estimates of CP requirement for maintenance and efficiency of utilization of CP intake for producing gain varied from 5.4 to 5.9 g/kg LW/day and 0.60 to 0.76, respectively, depending on the models.
Resumo:
Commonly used repair rate models for repairable systems in the reliability literature are renewal processes, generalised renewal processes or non-homogeneous Poisson processes. In addition to these models, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with the reliability modelling of failure processes for repairable systems where the failure intensity shows a bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is introduced in this paper. Reliability indices are presented, and the parameters of the new process are estimated. Experimental results on a data set demonstrate the validity of the new process.
Resumo:
The basic repair rate models for repairable systems may be homogeneous Poisson processes, renewal processes or nonhomogeneous Poisson processes. In addition to these models, geometric processes are studied occasionally. Geometric processes, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensity. This paper deals with the reliability modelling of the failure process of repairable systems when the failure intensity shows a bathtub type non-monotonic behaviour. A new stochastic process, an extended Poisson process, is introduced. Reliability indices and parameter estimation are presented. A comparison of this model with other repair models based on a dataset is made.
Resumo:
In the reliability literature, maintenance time is usually ignored during the optimization of maintenance policies. In some scenarios, costs due to system failures may vary with time, and the ignorance of maintenance time will lead to unrealistic results. This paper develops maintenance policies for such situations where the system under study operates iteratively at two successive states: up or down. The costs due to system failure at the up state consist of both business losses & maintenance costs, whereas those at the down state only include maintenance costs. We consider three models: Model A, B, and C: Model A makes only corrective maintenance (CM). Model B performs imperfect preventive maintenance (PM) sequentially, and CM. Model C executes PM periodically, and CM; this PM can restore the system as good as the state just after the latest CM. The CM in this paper is imperfect repair. Finally, the impact of these maintenance policies is illustrated through numerical examples.
Resumo:
Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
1. Closed Ecological Systems (CES) are small manmade ecosystems which do not have any material exchange with the surrounding environment. Recent ecological and technological advances enable successful establishment and maintenance of CES, making them a suitable tool for detecting and measuring subtle feedbacks and mechanisms. 2. As a part of an analogue (physical) C cycle modelling experiment, we developed a non-intrusive methodology to control the internal environment and to monitor atmospheric CO2 concentration inside 16 replicated CES. Whilst maintaining an air-tight seal of all CES, this approach allowed for access to the CO2 measuring equipment for periodic re-calibration and repairs. 3. To ensure reliable cross-comparison of CO2 observations between individual CES units and to minimise the cost of the system, only one CO2 sampling unit was used. An ADC BioScientific OP-2 (open-path) analyser mounted on a swinging arm was passing over a set of 16 measuring cells. Each cell was connected to an individual CES with air continuously circulating between them. 4. Using this setup, we were able to continuously measure several environmental variables and CO2 concentration within each closed system, allowing us to study minute effects of changing temperature on C fluxes within each CES. The CES and the measuring cells showed minimal air leakage during an experimental run lasting, on average, 3 months. The CO2 analyser assembly performed reliably for over 2 years, however an early iteration of the present design proved to be sensitive to positioning errors. 5. We indicate how the methodology can be further improved and suggest possible avenues where future CES based research could be applied.
Resumo:
Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.