17 resultados para Magnetization
em CentAUR: Central Archive University of Reading - UK
Resumo:
The majority of research on magnetic nanoparticles has focused on optical, electrical, and magnetic storage areas. Recently, the application of magnetic nanoparticles as magnetically separable nanovehicles for chemical or biological species has become an area of intensive research but with rather different challenging criteria that are yet to be addressed. For example, the enhancement of intrinsically weak magnetic properties, avoidance of magnetic interactions among particles, and improvement of the stability of the nanoparticles remain key issues. Here, it is demonstrated using sequential nanochemistry preparation techniques that exchange-coupled nanomagnets, such as FePt-Fe3Pt or FePt-Fe3O4 with dramatically enhanced magnetization, can be placed inside a silica nanosphere. The advantages of enhanced magnetization and the provision of protective coating and anchored sites on the silica shell surface render these new coated particles suitable for use in magnetic separation.
Resumo:
We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.
Resumo:
Four new copper(II) complexes, [((CuLN3)-N-1)(2)](ClO4)(2) (1), [(CuL2 N-3)(2)](ClO4)(2) (2), [CuL3(N-3)ClO4)](n) (3) and [CuL4(mu-1,1-N-3)(mu-1,3-N-3)(ClO4)](n) (4) where L-1 = N-1-pyridin-2-yl-methylene-propane-1,3-diamine, L-2 = N-1-(1-pyridin-2-yl-ethylidene)propane-1,3-diamine, L-3 =N-1-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine and L-4=N-1-(1-pyridin-2-yl-ethylidene)propane-1,2-diamine are four tridentate N,N,N donor Schiff base ligands, have been derived and structurally characterized by X-ray crystallography. Compounds 1 and 2 consist of double basal-apical end-on (EO) azide bridged dinuclear Cu-II complexes with square-pyramidal geometry. In complex 3 the square planar mononuclear [CuL3 (N-3)] units are linked by weakly coordinated perchlorate ions in the axial positions of Cu-II to form a one-dimensional chain. Two such chains are connected by hydrogen bonds involving perchlorate ions and azide groups. Compound 4 consists of 1-D chains in which the Cu-II ions with a square-pyramidal geometry are alternately bridged by single EO and end-to-end (EE) azido ligands, both adopting a basal-apical disposition. Variable temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K have been performed. The results reveal that complexes 1 and 2 are antiferromagnetically coupled through azido bridges (J= -12.18 +/- 0.09 and -4.43 +/- 0.1 cm(-1) for 1 and 2, respectively). Complex 3 shows two different magnetic interactions through the two kinds of hydrogen bonds; one is antiferromagnetic (J(1) = - 9.69 +/- 0.03 cm(-1)) and the other is ferromagnetic (J(2) = 1.00 +/- 0.01 cm(-1)). From a magnetic point of view complex 4 is a ferromagnetic dinuclear complex (J= 1.91 +/- 0.01 cm(-1)) coupled through the EO bridge only. The coupling through the EE bridge is practically nil as the N(azido)-Cu-II (axial) distance (2.643 angstrom) is too long. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Three new basal-apical, mu(2)-1,1-azide bridged complexes, [CuL1(N-3)](2) (1), [CuL2(N-3)](2) (2) and [CuL3(N-3)]2 (3) with very similar tridentate Schiff base blocking ligands [L-1=N-(3-aminopropyl) salicylaldimine, L-2=7-amino-4-methyl-5-azahept-3-en-2-one and L-3=8-amino-4-methyl-5-azaoct-3-en-2-one) have been synthesised and their molecular structures determined by X-ray crystallography. In complex 1, there is no inter-dimer H-bonding. However, complexes 2 and 3 form two different supramolecular structures in which the dinuclear entities are linked by strong H-bonds giving one-dimensional systems. Variable-temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1 and 2 have antiferromagnetic coupling while 3 has ferromagnetic coupling which is also confirmed by EPR spectra at 4-300 K. Magnetostructural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds in complexes 2 and 3.
Resumo:
There has been limited development in catalyst carriers for magnetic separations where superparamagnetic nanoparticles of a high saturation magnetization with no coercivity are required to isolate expensive catalyst reagent that are subjected to repeated magnetic cycles. By using simple stepwise layer-by-layer nanochemistry techniques, we show that an fee FePt nanomagnet can be created inside each silica particle with tailored dimensions to great precision. Subsequent engineering of the external surface with Ti-O-Si species in an optimum structure to create a unique interface gives high activity and excellent selectivity of the composite material for the trans-stilbene oxidation to the corresponding epoxide in the presence of tert-butyl hydroperoxide. Thus, a new magnetic separable epoxidation catalyst is described. This work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design, which could lead to new catalytic. properties.
Resumo:
LaMn and LaCo doped barium hexaferrites of formula Ba(1-x)LaxFe(12-x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 degrees C and for 2 h. The temperature was then raised to 950 degrees C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method.
Resumo:
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.
Resumo:
Several new coordinatively unsaturated iron(II) complexes of the types [Fe(EN-iPr)X2] (E = P, S, Se; X = Cl, Br) and [Fe(ON-iPr)2X]X containing bidentate EN ligands based on N-(2-pyridinyl)aminophosphines as well as oxo, thio, and seleno derivatives thereof were prepared and characterized by NMR spectroscopy and X-ray crystallography. Mössbauer spectroscopy and magnetization studies confirmed their high-spin nature with magnetic moments very close to 4.9 μB, reflecting the expected four unpaired d-electrons in all these compounds. Stable low-spin carbonyl complexes of the types [Fe(PN-iPr)2(CO)X]X (X = Cl, Br) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2X2] (X = Br) were obtained by reacting cis-Fe(CO)4X2 with the stronger PN donor ligands, but not with the weaker EN donor ligands (E = O, S, Se). Furthermore, the reactivity of [Fe(PN-iPr)X2] toward CO was investigated by IR spectroscopy. Whereas at room temperature no reaction took place, at −50 °C [Fe(PN-iPr)X2] added readily CO to form, depending on the nature of X, the mono- and dicarbonyl complexes [Fe(PN-iPr)(X)2(CO)] (X = Cl) and [Fe(PN-iPr)(CO)2X2] (X = Cl, Br), respectively. In the case of X = Br, two isomeric dicarbonyl complexes, namely, cis-CO,trans-Br-[Fe(PN-iPr)(CO)2Br2] (major species) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2Br2] (minor species), are formed. The addition of CO to [Fe(PN-iPr)X2] was investigated in detail by means of DFT/B3LYP calculations. This study strongly supports the experimental findings that at low temperature two isomeric low-spin dicarbonyl complexes are formed. For kinetic reasons cis,trans-[Fe(PN-iPr)(CO)2Br2] releases CO at elevated temperature, re-forming [Fe(PN-iPr)Br2], while the corresponding cis,cis isomer is stable under these conditions.
Resumo:
Three new MnIII complexes, {[Mn-2(salen)(2)(OCn)](ClO4)}(n) (1), {[Mn-2(salen)(2)(OPh)](ClO4)}(n) (2) and {[Mn-2(salen)(2)(OBz)](ClO4)}(2) (3) (where salen = N,N'-bis(salicylidene)-1,2-diaminoethane dianion, OCn = cinnamate, OPh = phenylacetate and OBz = benzoate), have been synthesized and characterized structurally and magnetically. The crystal structures reveal that all three structures contain syn-anti carboxylatebridged dimeric [Mn-2(salen)(2)(OOCR)](+) cations (OOCR = bridging carboxylate) that are joined together by weak Mn center dot center dot center dot O(phenoxo) interactions to form infinite alternating chain structures in 1 and 2, but the relatively long Mn center dot center dot center dot O(phenoxo) distance [3.621(2)angstrom] in 3 restricts this structure to tetranuclear units. Magnetic studies showed that 1 and 2 exhibited magnetic long-range order at T-N = 4.0 and 4.6 K (T-N = Neel transition temperature), respectively, to give spin-canted antiferromagnetic structures. Antiferromagnetic coupling was also observed in 3 but no peaks were recorded in the field-cooled magnetization (FCM) or zero-field-cooled magnetization (ZFCM) data, indicating that 3 remained paramagnetic down to 2 K. This dominant antiferromagnetic coupling is attributed to the carboxylate bridges. The ferromagnetic coupling expected due to the Mn-O(phenoxo)center dot center dot center dot Mn bridge plays an auxiliary role in the magnetic chain, but is an essential component of the bulk magnetic properties of the material.
Resumo:
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate-and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO2)](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-anti mu-1 kappa O:2 kappa O' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of chi(ac)' and a concomitant increase of chi(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The mu-nitrito-1 kappa O:2 kappa O' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the chi(ac)' and chi(ac)'' show frequency dependence.
Resumo:
Barium ferrites substituted by Mn–Sn, Co–Sn, and Mn–Co–Sn with general formulae BaFe12−2xMnxSnxO19 (x=0.2–1.0), BaFe12−2xCoxSnxO19 (x=0.2–0.8), and BaFe12−2xCox/2Mnx/2SnxO19 (x=0.1–0.6), respectively, have been prepared by a previously reported co-precipitation method. The efficiency of the method was refined by lowering the reaction temperature and shortening the required reaction time, due to which crystallinity improved and the value of saturated magnetization increased as well. Low coercivity temperature coefficients, which are adjustable by doping, were achieved by Mn–Sn and Mn–Co–Sn doping. Synthesis efficiency and the effect of doping are discussed taking into account accumulated data concerning the synthesis and crystal structure of ferrites.
Resumo:
A new family of vanadium-substituted chromium sulfides (VxCr2-xS3, 0 < x < 2) has been prepared and characterized by powder X-ray and neutron diffraction, SQUID magnetometry, electrical resistivity, and Seebeck coefficient measurements. Vanadium substitution leads to a single-phase region with a rhombohedral Cr2S3 structure over the composition range 0.0 < x e 0.75, while at higher vanadium contents (1.6 e x < 2.0) a second single-phase region, in which materials adopt a cation-deficient Cr3S4 structure, is observed. Materials with the Cr2S3 structure all exhibit semiconducting behavior. However, both transport and magnetic properties indicate an increasing degree of electron delocalization with increasing vanadium content in this compositional region. Materials that adopt a Cr3S4-type structure exhibit metallic behavior. Magnetic susceptibility data reveal that all materials undergo a magnetic ordering transition at temperatures in the range 90–118 K. Low-temperature magnetization data suggest that this involves a transition to a ferrimagnetic state.
Resumo:
In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.
Resumo:
The magnetization properties of aggregated ferrofluids are calculated by combining the chain formation model developed by Zubarev with the modified mean-field theory. Using moderate assumptions for the inter- and intrachain interactions we obtain expressions for the magnetization and initial susceptibility. When comparing the results of our theory to molecular dynamics simulations of the same model we find that at large dipolar couplings (lambda>3) the chain formation model appears to give better predictions than other analytical approaches. This supports the idea that chain formation is an important structural ingredient of strongly interacting dipolar particles.
Resumo:
We study by Langevin molecular dynamics simulations systematically the influence of polydispersity in the particle size, and subsequently in the dipole moment, on the physical properties of ferrofluids. The polydispersity is in a first approximation modeled by a bidisperse system that consists of small and large particles at different ratios of their volume fractions. In the first part of our investigations the total volume fraction of the system is fixed, and the volume fraction phi(L) of the large particles is varied. The initial susceptibility chi and magnetization curve of the systems show a strong dependence on the value of phi(L). With the increase of phi(L), the magnetization M of the system has a much faster increment at weak fields, and thus leads to a larger chi. We performed a cluster analysis that indicates that this is due to the aggregation of the large particles in the systems. The average size of these clusters increases with increasing phi(L). In the second part of our investigations, we fixed the volume fraction of the large particles, and increased the volume fraction phi(S) of the small particles in order to study their influence on the chain formation of the large ones. We found that the average aggregate size formed by large particles decreases when phi(S) is increased, demonstrating a significant effect of the small particles on the structural properties of the system. A topological analysis of the structure reveals that the majority of the small particles remain nonaggregated. Only a small number of them are attracted to the ends of the chains formed by large particles.