15 resultados para Magnetic exchange

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new tetranuclear complex, [Cu4L4](ClO4)4·2H2O (1), has been synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligand (2E,3E)-3-(2-aminopropylimino) butan-2-one oxime (HL). Single-crystal X-ray diffraction studies reveal that complex 1 consists of a Cu4(NO)4 core where the four copper(II) centers having square pyramidal environment are arranged in a distorted tetrahedral geometry. They are linked together by a rare bridging mode (μ3-η1,η2,η1) of oximato ligands. Analysis of magnetic susceptibility data indicates moderate antiferromagnetic (J1 = −48 cm−1, J2 = −40 cm−1 and J3 = −52 cm−1) exchange interaction through σ-superexchange pathways (in-plane bridging) of the oxime group. Theoretical calculations based on DFT technique have been used to obtain the energy states of different spin configurations and estimate the coupling constants and to understand the exact magnetic exchange pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2–300K and with 100Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1=−638cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2=−34cm−1) interaction between N–C–N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dinuclear Ni-II complex, [Ni-2(L)(2)(H2O)(NCS)(2)]center dot 3H(2)O (1) in which the metal atoms are bridged by one water molecule and two mu(2)-phenolate ions, and a thiocyanato-bridged dimeric Cull complex, [Cu(L)NCS](2) (2) [L = tridentate Schiff-base ligand, N-(3-aminopropyl)salicylaldimine, derived from 1:1 condensation of salicylaldehyde and 1,3-diaminopropane], have been synthesized and characterized by IR and UV/Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction studies. The structure of 1 consists of dinuclear units with crystallographic C-2 symmetry in which each Ni-II atom is in a distorted octahedral environment. The Ni-O distance and the Ni-O-Ni angle, through the bridged water molecule, are 2.240(11) angstrom and 82.5(5)degrees, respectively. The structure of 2 consists of dinuclear units bridged asymmetrically by di-mu(1,3)-NCS ions; each Cull ion is in a square-pyramidal environment with tau = 0.25. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complex 1 with J = 3.1 cm(-1), whereas complex 2 exhibits weak antiferromagnetic coupling between the Cu-II centers with J = -1.7 cm(-1). ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of iodoacetic acid with cupric carbonate in water in dimmed light yields green Cu(ICH2COO)(2 center dot)H2O (1). From X-ray crystallography, it is found to be a tetra-acetato bridged copper(II) dimer with the water molecules occupying the apical positions. In thermogravimetry, the coordinated water molecules are lost in the temperature range 50-100 degrees C. From magnetic susceptibility measurements in the temperature range 300-1.8 K, the exchange coupling constant J is found to be -142(1) cm(-1) and g = 2.18(2) with the spin Hamiltonian H = -2J{S-Cu1 center dot S-Cu2}. It reacts with 2,2'-bipyridine (bpy) to yield [Cu(bpy)(2)I]I. It oxidises thiophenol to Ph-S-S-Ph under dry N-2 atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of research on magnetic nanoparticles has focused on optical, electrical, and magnetic storage areas. Recently, the application of magnetic nanoparticles as magnetically separable nanovehicles for chemical or biological species has become an area of intensive research but with rather different challenging criteria that are yet to be addressed. For example, the enhancement of intrinsically weak magnetic properties, avoidance of magnetic interactions among particles, and improvement of the stability of the nanoparticles remain key issues. Here, it is demonstrated using sequential nanochemistry preparation techniques that exchange-coupled nanomagnets, such as FePt-Fe3Pt or FePt-Fe3O4 with dramatically enhanced magnetization, can be placed inside a silica nanosphere. The advantages of enhanced magnetization and the provision of protective coating and anchored sites on the silica shell surface render these new coated particles suitable for use in magnetic separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new Cu(II)-azido complexes of formula [CuL(N-3)] (1), [CuL(N-3)](2) (2), [Cu7L2(N-3)(12)](n) (3), and [Cu2L(dmen)-(N-3)(3)](n) (4) (dmen = N,N-dimethylethylenediamine) have been synthesized using the same tridentate Schiff base ligand HL (2-[1-(2-dimethylaminoethylimino)ethyl]phenol, the condensation product of dmen and 2-hydroxyacetophenone). The four compounds have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 1 is mononuclear, whereas 2 is a single mu-1,1 azido-bridged dinuclear compound. The polymeric compound 3 possesses a 2D structure in which the Cu(II) ions are linked by phenoxo oxygen atoms and two different azide bridges (mu-1,1 and mu-1,1,3). The structure of complex 4 is a double helix in which two mu-1,3-azido-bridged alternating one-dimensional helical chains of CuL(N-3) and Cu(dmen)(N-3)(2) are joined together by weak mu-1,1 azido bridges and H-bonds. The complexes interconvert in solution and can be obtained in pure form by carefully controlling the conditions. The magnetic properties of compounds 1 and 2 show the presence of very weak antiferromagnetic exchange interactions mediated by a ligand pi overlap (J = -1.77) and by an asymmetric 1,1-N-3 bridge (J = -1.97 cm(-1)), respectively. Compound 3 presents, from the magnetic point of view, a decorated chain structure with both ferro- and antiferromagnetic interactions. Compound 4 is an alternating helicoidal chain with two weak antiferromagnetic exchange interactions (J -1.35 and -2.64 cm(-1)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new mono-aqua-bridged dinuclear Cu(II) complexes of tridentate NNO Schiff bases, [Cu-2(mu-H2O)L-2(1)(H2O)(2)](BF4)(2)center dot 2H(2)O (1) and [Cu-2(mu-H2O)L-2(2)(H2O)(2)](BF4)(2)center dot 2H(2)O (2) where HL1 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol and HL2 =2-[(2-dimethylamino-ethylimino)-methyl]-phenol were synthesized. Both the complexes were characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. For both the complexes each Cu(II) ion is in a square-pyramidal environment being bonded to three atoms from the tridentate NNO Schiff base and a terminal H2O molecule in the equatorial plane; a second H2O ligand acts as a bridge between the two Cu(II) centres through the axial positions. Hydrogen bonds between the terminal H2O ligand and the Schiff base of the adjacent centre complete the intra-dimer linkages. Variable-temperature (4-300 K) magnetic susceptibility measurement shows the presence of significant antiferromagnetic coupling for both the complexes (J = -12.2 and -12.5 cm(-1), respectively, for 1 and 2), mediated mainly through the intra-dimer H-bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new Fe-III complexes, [Fe2L2(mu-OMe)(2)(NCS)(2)] (1) and [Fe2L2(mu-N-3)(2)(N-3)(2)] (2), have been synthesized using a N,N,O-donor tridentate Schiff base ligand HL {2-[(2-dimethylaminoethylimino)methyl]phenol}, the condensation product of salicylaldehyde and N,N-dimethyl-1,2-diaminoethane. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both crystal structures are centrosymmetric dimers containing two Fe-III atoms, which are bridged in compound 1 by two methoxy anions and in compound 2 by two mu-1,1-azides. The chelating tridentate Schiff base and a terminal thiocyanato (for 1) or azido (for 2) group complete the hexacoordination of the distorted octahedral environment of each iron center. The magnetic properties of compound 1 show the presence of antiferromagnetic exchange interactions mediated by double methoxy bridges (J = -29.45 cm(-1)). Compound 2 shows the presence of very weak ferromagnetic exchange interactions mediated by double mu-1,1-N-3 bridges (J = 1.08 cm(-1)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate-and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO2)](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-anti mu-1 kappa O:2 kappa O' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of chi(ac)' and a concomitant increase of chi(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The mu-nitrito-1 kappa O:2 kappa O' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the chi(ac)' and chi(ac)'' show frequency dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new nickel(II) complexes, [Ni2L2(NO2)2]·CH2Cl2·C2H5OH, 2H2O (1), [Ni2L2(DMF)2(m-NO2)]ClO4·DMF (2a), [Ni2L2(DMF)2(m-NO2)]ClO4 (2b) and [Ni3L¢2(m3-NO2)2(CH2Cl2)]n·1.5H2O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H2L¢ = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL2]·2H2O, nickel(II) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, NiII ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-m2-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(m-nitrito-1kO:2kN) bridge is present in addition to the di-m2-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as m-nitrito-1kO:2kN bridged trinuclear units are linked through a very rare m3-nitrito-1kO:2kN:3kO¢ bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(II) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm-1 for 1, 2a, 2b and 3, respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The orientation of the Interplanetary Magnetic Field (IMF) during transient bursts of ionospheric flow and auroral activity in the dayside auroral ionosphere is studied, using data from the EISCAT radar, meridian-scanning photometers, and an all-sky TV camera, in conjunction with simultaneous observations of the interplanetary medium by the IMP-8 satellite. It is found that the ionospheric flow and auroral burst events occur regularly (mean repetition period equal to 8.3 ± 0.6 min) during an initial period of about 45 min when the IMF is continuously and strongly southward in GSM coordinates, consistent with previous observations of the occurrence of transient dayside auroral activity. However, in the subsequent 1.5 h, the IMF was predominantly northward, and only made brief excursions to a southward orientation. During this period, the mean interval between events increased to 19.2 ± 1.7 min. If it is assumed that changes in the North-South component of the IMF are aligned with the IMF vector in the ecliptic plane, the delays can be estimated between such a change impinging upon IMP-8 and the response in the cleft ionosphere within the radar field-of-view. It is found that, to within the accuracy of this computed lag, each transient ionospheric event during the period of predominantly northward IMF can be associated with a brief, isolated southward excursion of the IMF, as observed by IMP-8. From this limited period of data, we therefore suggest that transient momentum exchange between the magnetosheath and the ionosphere occurs quasi-periodically when the IMF is continuously southward, with a mean period which is strikingly similar to that for Flux Transfer Events (FTEs) at the magnetopause. During periods of otherwise northward IMF, individual momentum transfer events can be triggered by brief swings to southward IMF. Hence under the latter conditions the periodicity of the events can reflect a periodicity in the IMF, but that period will always be larger than the minimum value which occurs when the IMF is strongly and continuously southward.