3 resultados para Macrophage Mannose Receptor

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant Penicillium citrinum alpha-1,2-mannosidase, expressed in Aspergillus oryzae, was employed to carry out regioselective synthesis of alpha-D-mannopyranosyl-(1-->2)-D-mannose. Yields (w/w) of 16.68% disaccharide, 3.07% trisaccharide and 0.48% tetrasaccharide were obtained, with alpha1-->2 linkages present at 98.5% of the total linkages formed. Non-specific alpha-mannosidase from almond was highly efficient in reverse hydrolysis and oligosaccharide yields of 45-50% were achieved. The products of the almond mannosidase were a mixture of disaccharides (30.75%, w/w), trisaccharides (12.26%, w/w) and tetrasaccharides (1.89%, w/w) with 1-->2, 1-->3 and 1-->6 isomers. alpha-1,2-linkage specific mannosidase from P. citrinum and alpha-1,6-linkage-specific mannosidase from Aspergillus phoenicis were used in combination to hydrolyse the respective linkages from the mixture of isomers, resulting in alpha-D-mannopyranosyl-(1-->3)-D-mannose in 86.4% purity. The synthesised oligosaccharides can potentially inhibit the adhesion of pathogens by acting as 'decoys' of receptors of type-1 fimbriae carried by enterobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.