31 resultados para MULTIVARIATE GARCH
em CentAUR: Central Archive University of Reading - UK
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
We show how multivariate GARCH models can be used to generate a time-varying “information share” (Hasbrouck, 1995) to represent the changing patterns of price discovery in closely related securities. We find that time-varying information shares can improve credit spread predictions.
Resumo:
Multivariate statistical methods were used to investigate file Causes of toxicity and controls on groundwater chemistry from 274 boreholes in an Urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and Sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations. and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoinacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional Scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.
Resumo:
Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
Background: Robot-mediated therapies offer entirely new approaches to neurorehabilitation. In this paper we present the results obtained from trialling the GENTLE/S neurorehabilitation system assessed using the upper limb section of the Fugl-Meyer ( FM) outcome measure. Methods: We demonstrate the design of our clinical trial and its results analysed using a novel statistical approach based on a multivariate analytical model. This paper provides the rational for using multivariate models in robot-mediated clinical trials and draws conclusions from the clinical data gathered during the GENTLE/S study. Results: The FM outcome measures recorded during the baseline ( 8 sessions), robot-mediated therapy ( 9 sessions) and sling-suspension ( 9 sessions) was analysed using a multiple regression model. The results indicate positive but modest recovery trends favouring both interventions used in GENTLE/S clinical trial. The modest recovery shown occurred at a time late after stroke when changes are not clinically anticipated. Conclusion: This study has applied a new method for analysing clinical data obtained from rehabilitation robotics studies. While the data obtained during the clinical trial is of multivariate nature, having multipoint and progressive nature, the multiple regression model used showed great potential for drawing conclusions from this study. An important conclusion to draw from this paper is that this study has shown that the intervention and control phase both caused changes over a period of 9 sessions in comparison to the baseline. This might indicate that use of new challenging and motivational therapies can influence the outcome of therapies at a point when clinical changes are not expected. Further work is required to investigate the effects arising from early intervention, longer exposure and intensity of the therapies. Finally, more function-oriented robot-mediated therapies or sling-suspension therapies are needed to clarify the effects resulting from each intervention for stroke recovery.
Resumo:
This study analyzes the issue of American option valuation when the underlying exhibits a GARCH-type volatility process. We propose the usage of Rubinstein's Edgeworth binomial tree (EBT) in contrast to simulation-based methods being considered in previous studies. The EBT-based valuation approach makes an implied calibration of the pricing model feasible. By empirically analyzing the pricing performance of American index and equity options, we illustrate the superiority of the proposed approach.
Resumo:
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.