5 resultados para MIPAS, ozono, CFC-11, tendenza

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quality assessment of the CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments is provided by means of a detailed intercomparison. The climatologies in the form of monthly zonal mean time series are obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991–2010. The intercomparisons focus on the mean biases of the monthly and annual zonal mean fields and aim to identify their vertical, latitudinal and temporal structure. The CFC evaluations (based on MIPAS, ACE-FTS and HIRDLS) reveal that the uncertainty in our knowledge of the atmospheric CFC-11 and CFC-12 mean state, as given by satellite data sets, is smallest in the tropics and mid-latitudes at altitudes below 50 and 20 hPa, respectively, with a 1σ multi-instrument spread of up to ±5 %. For HF, the situation is reversed. The two available data sets (HALOE and ACE-FTS) agree well above 100 hPa, with a spread in this region of ±5 to ±10 %, while at altitudes below 100 hPa the HF annual mean state is less well known, with a spread ±30 % and larger. The atmospheric SF6 annual mean states derived from two satellite data sets (MIPAS and ACE-FTS) show only very small differences with a spread of less than ±5 % and often below ±2.5 %. While the overall agreement among the climatological data sets is very good for large parts of the upper troposphere and lower stratosphere (CFCs, SF6) or middle stratosphere (HF), individual discrepancies have been identified. Pronounced deviations between the instrument climatologies exist for particular atmospheric regions which differ from gas to gas. Notable features are differently shaped isopleths in the subtropics, deviations in the vertical gradients in the lower stratosphere and in the meridional gradients in the upper troposphere, and inconsistencies in the seasonal cycle. Additionally, long-term drifts between the instruments have been identified for the CFC-11 and CFC-12 time series. The evaluations as a whole provide guidance on what data sets are the most reliable for applications such as studies of atmospheric transport and variability, model–measurement comparisons and detection of long-term trends. The data sets will be publicly available from the SPARC Data Centre and through PANGAEA (doi:10.1594/PANGAEA.849223).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiative forcing values have been calculated for 11 halogenated compounds which are in current use or which have been suggested as possible replacements for the chlorofluorocarbons. Absorption cross-sections measured over a range of atmospheric temperature and pressure conditions as part of a multi-laboratory programme have been used together with a narrow band radiative transfer model. We provide a “best estimate” radiative forcing taking into account the likely vertical profile of the gas in each case. The Global Warming Potential over a variety of time horizons has also been calculated where the lifetime is available. We present the first such information for 1,2-dichloroethane. For chloroform our radiative forcing is 5 times higher than the value used in previous assessments, possibly because these ignored the effect of absorption outside the 800–1200 cm−1 “window”. For several of the other compounds considered here, our forcing is between 10 and 30% lower than previous assessments. The perfluorocarbons have been found to have large global warming potentials, many times that of CFC-11, due to both strong absorption and long lifetimes. The importance of absorption features at wavenumbers below 800 cm−1 and the effect of temperature variations in absorption cross-section on the radiative forcing are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green's function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3 degrees resolution. Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air-sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland-Scotland ridge (sigma (0) < 27.82 kg m(-3); shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux-twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv = 10(6) m(3) s(-1)) for subtropical mode water and subpolar mode water, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6) are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new radiative transfer simulations to support determination of sea surface temperature (SST) from Along Track Scanning Radiometer (ATSR) imagery. The simulations are to be used within the ATSR Reprocessing for Climate project. The simulations are based on the “Reference Forward Model” line-by-line model linked with a sea surface emissivity model that accounts for wind speed and temperature, and with a discrete ordinates scattering model (DISORT). Input to the forward model is a revised atmospheric profile dataset, based on full resolution ERA-40, with a wider range of high-latitude profiles to address known retrieval biases in those regions. Analysis of the radiative impacts of atmospheric trace gases shows that geographical and temporal variation of N2O, CH4, HNO3, and CFC-11 and CFC-12 have effects of order 0.05, 0.2, 0.1 K on the 3.7, 11, 12 μm channels respectively. In addition several trace gases, neglected in previous studies, are included using fixed profiles contributing ~ 0.04 K to top-of-atmosphere BTs. Comparison against observations for ATSR2 and AATSR indicates that forward model biases have been reduced from 0.2 to 0.5 K for previous simulations to ~ 0.1 K.