8 resultados para MEMS vibration energy harvesters

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently. Carter and Handy [J. Chem. Phys. 113 (2000) 987] have introduced the theory of the reaction path Hamiltonian (RPH) [J. Chem. Phys. 72 (1980) 99] into the variational scheme MULTIMODE, for the calculation of the J = 0 vibrational levels of polyatomic molecules, which have a single large-amplitude motion. In this theory the reaction path coordinate s becomes the fourth dimension of the moment-of-inertia tensor, and must be treated separately from the remaining 3N - 7 normal coordinates in the MULTIMODE program. In the modified program, complete integration is performed over s, and the M-mode MULTIMODE coupling approximation for the evaluation of the matrix elements applies only to the 3N - 7 normal coordinates. In this paper the new algorithm is extended to the calculation of rotational-vibration energy levels (i.e. J > 0) with the RPH, following from our analogous implementation for rigid molecules [Theoret. Chem. Acc. 100 (1998) 191]. The full theory is given, and all extra terms have been included to give the exact kinetic energy operator. In order to validate the new code, we report studies on hydrogen peroxide (H2O2), where the reaction path is equivalent to torsional motion. H2O2 has previously been studied variationally using a valence coordinate Hamiltonian; complete agreement for calculated rovibrational levels is obtained between the previous results and those from the new code, using the identical potential surface. MULTIMODE is now able to calculate rovibrational levels for polyatomic molecules which have one large-amplitude motion. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lowest-wavenumber vibration of HCNO and DCNO, ν5, is known to involve a largeamplitude low-frequency anharmonic bending of the CH bond against the CNO frame. In this paper the anomalous vibrational dependence of the observed rotational constants B(v5, l5), and of the observed l-doubling interactions, is interpreted according to a simple effective vibration-rotation Hamiltonian in which the appropriate vibrational operators are averaged in an anharmonic potential surface over the normal coordinates (Q5x, Q5y). All of the data on both isotopes are interpreted according to a single potential surface having a minimum energy at a slightly bent configuration of the HCN angle ( 170°) with a maximum at the linear configuration about 2 cm−1 higher. The other coefficients in the Hamiltonian are also interpreted in terms of the structure and the harmonic and anharmonic force fields; the substitution structure at the “hypothetical linear configuration” determined in this way gives a CH bond length of 1.060 Å, in contrast to the value 1.027 Å determined from the ground-state rotational constants. We also discuss the difficulties in rationalizing our effective Hamiltonian in terms of more fundamental theory, as well as the success and limitations of its use in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several high-order vibration-rotation perturbations in the high-resolution infrared spectrum of monofluoroacetylene, HCCF, are assigned and analyzed in detail. They result in avoided crossings in the rotational structure of several bands, and precise values for the effective high-order terms in the Hamiltonian have been determined. The significance of these results for intramolecular vibrational redistribution is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems of inverting experimental information obtained from vibration-rotation spectroscopy to determine the potential energy surface of a molecule are discussed, both in relation to semi-rigid molecules like HCN, NO2, H2CO, etc., and in relation to non-rigid or floppy molecules with large amplitude vibrations like HCNO, C3O2, and small ring molecules. Although standard methods exist for making the necessary calculations in the former case, they are complex, and they require an abundance of precise data on the spectrum that is rarely available. In the case of floppy molecules there are often data available over many excited states of the large amplitude vibration, but there are difficulties in knowing the precise form of the large amplitude coordinate(s), and in allowing for the vibrational averaging effects of the other modes. In both cases difficulties arise from the curvilinear nature of the vibrational paths which are not adequately handled by our present theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical potential functions are reported for the ground state surfaces of HCO and HNO, the functions being derived from spectroscopic and ab initio data. Harmonized force fields have been deduced for the stable configurations of both molecules and vibration frequencies predicted for the metastable species COH and NOH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 133 samples (53 fermented unprocessed, 19 fermented processed. 62 urea-treated processed) of whole crop wheat (WCW) and 16 samples (five fermented unprocessed, six fermented processed, five urea-treated processed) of whole crop barley (WCB) were collected from commercial farms over two consecutive years (2003/2004 and 2004/2005). Disruption of the maize grains to increase starch availability was achieved at the point of harvest by processors fitted to the forage harvesters. All samples were subjected to laboratory analysis whilst 50 of the samples (24 front Year 1, 26 front Year 2 all WCW except four WCB in Year 2) were subjected to in vivo digestibility and energy value measurements using mature wether sheep. Urea-treated WCW had higher (P<0.05) pH, and dry matter (DM) and crude protein contents and lower concentrations of fermentation products than fermented WCW. Starch was generally lower in fermented, unprocessed WCW and no effect of crop maturity at harvest (as indicated by DM content) on starch concentrations was seen. Urea-treated WCW had higher (P<0.05) in vivo digestible organic matter contents in the DM (DOMD) in Year 1 although this was not recorded in Year 2. There was a close relationship between the digestibility values of organic matter and gross energy thus aiding the use of DOMD to predict metabolisable energy (ME) content. A wide range of ME values was observed (WCW. 8.7-11.8 MJ/kg DM; WCB 7.9-11.2 MJ/kg DM) with the overall ME/DOMD ratio (ME = 0.0156 DOMD) in line With Studies in other forages. There was no evidence that a separate ME/DOMD relationship was needed for WCB which is helpful for practical application. This ratio and other parameters were affected by year of harvest (P<0.05) highlighting the influence of environmental and Other undefined factors. The variability in the composition and nutritive value of WCW and WCB highlights the need for reliable and accurate evaluation methods to be available to assess the Value of these forages before they are included in diets for dairy cows. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cercal hairs represent in cricket a wind sensitive escape system, able to detect the airflow generated from predating species. These sensors have been studied as a biomimetic concept to allow the development of MEMS for biomedical use. In particular, the behaviour of the hairs, including airflow response, resonant frequency and damping, has been investigated up to a frequency of 20 kHz. The microscopic nature of the hairs, the complex vibrations of excited hairs and the high damping of the system suggested that the use of Laser Doppler vibrometry could possibly improve the test performance. Two types of tests were performed: in the first case the hairs were indirectly excited using the signal obtained from a vibrating aluminium plate, whilst in the second case the hairs were directly excited using a white noise chirp. The results from the first experiment indicated that the hairs move in-phase with the exciting signal up to frequencies in the order of 10 kHz, responding to the vibration modes of the plate with a signal attenuation of 12 to 20 dB. The chirp experiment revealed the presence of rotational resonant modes at 6850 and 11300 Hz. No clear effect of hair length was perceivable on the vibration response of the filiform sensors. The obtained results proved promising to support the mechanical and vibration characterisation of the hairs and suggest that scanning Laser vibrometry can be used extensively on highly dampened biological materials.