2 resultados para MELT POINT
em CentAUR: Central Archive University of Reading - UK
Resumo:
Using self-consistent field theory (SCFT), we investigate the morphologies formed by a melt brush of AB diblock copolymers grafted to a flat substrate by their B ends. In addition to a laterally uniform morphology, SCFT predicts three ordered morphologies exhibiting different periodic patterns at the air surface: a hexagonal array of A-rich dots, an alternating sequence of A- and B-rich stripes, and a hexagonal pattern of B-rich dots. When the phase diagram of the tethered film is plotted as a function of A/B incompatibility, $\chi N$, and diblock composition, $f$, it resembles the bulk phase diagram with the periodic phases converging to a mean-field critical point at weak segregation. The periodic-phase region in the phase diagram shrinks with increasing grafting density and expands when the air surface acquires an affinity for the grafted B blocks.
Resumo:
We present a simple device for multiplex quantitative enzyme-linked immunosorbant assays (ELISA) made from a novel melt-extruded microcapillary film (MCF) containing a parallel array of 200µm capillaries along its length. To make ELISA devices different protein antigens or antibodies were immobilised inside individual microcapillaries within long reels of MCF extruded from fluorinated ethylene propylene (FEP). Short pieces of coated film were cut and interfaced with a pipette, allowing sequential uptake of samples and detection solutions into all capillaries from a reagent well. As well as being simple to produce, these FEP MCF devices have excellent light transmittance allowing direct optical interrogation of the capillaries for simple signal quantification. Proof of concept experiments demonstrate both quantitative and multiplex assays in FEP MCF devices using a standard direct ELISA procedure and read using a flatbed scanner. This new multiplex immunoassay platform should find applications ranging from lab detection to point-of-care and field diagnostics.