3 resultados para MACRO-FIBRE COMPOSITES
em CentAUR: Central Archive University of Reading - UK
Resumo:
The use of plants fibre reinforced composites has continuously increased during recent years. Their low density, higher environmental friendliness, and reduced cost proved particularly attractive for low-tech applications e.g., in building, automotive and leisure time industry. However, a major limitation to the use of these materials in structural components is unsatisfactory impact performance. An intermediate approach, the production of glass/ plant fibre hybrid laminates, has also been explored, trying to obtain materials with sufficient impact properties, whilst retaining a reduced cost and a substantial environmental gain. A survey is given on some aspects, crucial for the use of glass/plant fibre hybrid laminates in structural components: performance of hybrids when subjected to impact testing; the effect of laminate configuration, manufacturing procedure and fibre treatment on impact properties of the composite. Finally, indications are provided for a suitable selection of plant fibres with minimal extraction damage and sufficient toughness, for introduction in an impact-resistant glass/plant fibre hybrid laminate.
Resumo:
We report on a distributed moisture detection scheme which uses a cable design based on waterswellable hydrogel polymers. The cable modulates the loss characteristic of light guided within a multi-mode optical fibre in response to relative water potentials in the surrounding environment. Interrogation of the cable using conventional optical time-domain reflectometry (OTDR) instruments allows water ingress points to be identified and located with a spatial resolution of 50 cm. The system has been tested in a simulated tendon duct grouting experiment as a means of mapping the extent of fill along the duct during the grouting process. Voided regions were detected and identified to within 50 cm. A series of salt solutions has been used to determine the sensor behaviour over a range of water potentials. These experiments predict that measurements of soil moisture content can be made over the range 0 to – 1500 kPa. Preliminary data on soil measurements have shown that the sensor can detect water pressure changes with a resolution of 45 kPa. Applications for the sensor include quality assurance of grouting procedures, verification of waterproofing barriers and soil moisture content determination (for load-bearing calculations).
Resumo:
This paper presents a completely new design of a bogie-frame made of glass fibre reinforced composites and its performance under various loading conditions predicted by finite element analysis. The bogie consists of two frames, with one placed on top of the other, and two axle ties connecting the axles. Each frame consists of two side arms and a transom between. The top frame is thinner and more compliant and has a higher curvature compared with the bottom frame. Variable vertical stiffness can be achieved before and after the contact between the two frames at the central section of the bogie to cope with different load levels. Finite element analysis played a very important role in the design of this structure. Stiffness and stress levels of the full scale bogie presented in this paper under various loading conditions have been predicted by using Marc provided by MSC Software. In order to verify the finite element analysis (FEA) models, a fifth scale prototype of the bogie has been made and tested under quasi-static loading conditions. Results of testing on the fifth scale bogie have been used to fine tune details like contact and friction in the fifth scale FEA models. These conditions were then applied to the full scale models. Finite element analysis results show that the stress levels in all directions are low compared with material strengths.