9 resultados para Lyapunov Characteristic Exponent
em CentAUR: Central Archive University of Reading - UK
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD database over the period 1981 to 2003 than Normally distributed risk models, which mirrors results in the U.S. and Australia using identical methodology. Real estate investment risk is heteroscedastic, but the Characteristic Exponent of the investment risk function is constant across time yet may vary by property type. Asset diversification is far less effective at reducing the impact of non-systematic investment risk on real estate portfolios than in the case of assets with Normally distributed investment risk. Multi-risk factor portfolio allocation models based on measures of investment codependence from finite-variance statistics are ineffectual in the real estate context.
Resumo:
Prediction of the solar wind conditions in near-Earth space, arising from both quasi-steady and transient structures, is essential for space weather forecasting. To achieve forecast lead times of a day or more, such predictions must be made on the basis of remote solar observations. A number of empirical prediction schemes have been proposed to forecast the transit time and speed of coronal mass ejections (CMEs) at 1 AU. However, the current lack of magnetic field measurements in the corona severely limits our ability to forecast the 1 AU magnetic field strengths resulting from interplanetary CMEs (ICMEs). In this study we investigate the relation between the characteristic magnetic field strengths and speeds of both magnetic cloud and noncloud ICMEs at 1 AU. Correlation between field and speed is found to be significant only in the sheath region ahead of magnetic clouds, not within the clouds themselves. The lack of such a relation in the sheaths ahead of noncloud ICMEs is consistent with such ICMEs being skimming encounters of magnetic clouds, though other explanations are also put forward. Linear fits to the radial speed profiles of ejecta reveal that faster-traveling ICMEs are also expanding more at 1 AU. We combine these empirical relations to form a prediction scheme for the magnetic field strength in the sheaths ahead of magnetic clouds and also suggest a method for predicting the radial speed profile through an ICME on the basis of upstream measurements.
Resumo:
In many applications, there is a desire to determine if the dynamics of interest are chaotic or not. Since positive Lyapunov exponents are a signature for chaos, they are often used to determine this. Reliable estimates of Lyapunov exponents should demonstrate evidence of convergence; but literature abounds in which this evidence lacks. This paper presents two maps through which it highlights the importance of providing evidence of convergence of Lyapunov exponent estimates. The results suggest cautious conclusions when confronted with real data. Moreover, the maps are interesting in their own right.
Resumo:
We study systems with periodically oscillating parameters that can give way to complex periodic or nonperiodic orbits. Performing the long time limit, we can define ergodic averages such as Lyapunov exponents, where a negative maximal Lyapunov exponent corresponds to a stable periodic orbit. By this, extremely complicated periodic orbits composed of contracting and expanding phases appear in a natural way. Employing the technique of ϵ-uncertain points, we find that values of the control parameters supporting such periodic motion are densely embedded in a set of values for which the motion is chaotic. When a tiny amount of noise is coupled to the system, dynamics with positive and with negative nontrivial Lyapunov exponents are indistinguishable. We discuss two physical systems, an oscillatory flow inside a duct and a dripping faucet with variable water supply, where such a mechanism seems to be responsible for a complicated alternation of laminar and turbulent phases.
Resumo:
This paper tests directly for deterministic chaos in a set of ten daily Sterling-denominated exchange rates by calculating the largest Lyapunov exponent. Although in an earlier paper, strong evidence of nonlinearity has been shown, chaotic tendencies are noticeably absent from all series considered using this state-of-the-art technique. Doubt is cast on many recent papers which claim to have tested for the presence of chaos in economic data sets, based on what are argued here to be inappropriate techniques.