86 resultados para Low-density Lipoproteins
em CentAUR: Central Archive University of Reading - UK
Resumo:
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Resumo:
Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. Weshow that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase–dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C g2. Inhibition of Syk, Ca21 mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase–dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.
Resumo:
The oxidised low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidised LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidised intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalised rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidised inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.
Resumo:
LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The in vitro antioxidant activity and the protective effect against human low density lipoprotein oxidation of coffees prepared using different degrees of roasting was evaluated. Coffees with the highest amount of brown pigments (dark coffee) showed the highest peroxyl radical scavenging activity. These coffees also protected human low-density lipoprotein (LDL) against oxidation, although green coffee extracts showed more protection. In a different experiment, coffee extracts were incubated with human plasma prior to isolation of LDL particles. This showed, for the first time, that incubation of plasma with dark, but not green coffee extracts protected the LDL against oxidation by copper or by the thermolabile azo compound AAPH. Antioxidants in the dark coffee extracts must therefore have become associated with the LDL particles. Brown compounds, especially those derived from the Maillard reaction, are the compounds most likely to be responsible for this activity.
Resumo:
The oxidized low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidized LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidized intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalized rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidized inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.
Resumo:
Apolipoprotein A-IV (apoA-IV) inhibits lipid peroxidation, thus demonstrating potential anti-atherogenic properties. The aim of this study was to investigate how the inhibition of low density lipoprotein (LDL) oxidation was influenced by common apoA-IV isoforms. Recombinant wild type apoA-IV (100 mu g/ml) significantly inhibited the oxidation of LDL (50 mu g protein/ml) by 5 mu M CuSO4 (P < 0.005), but not by 100 mu M CuSO4, suggesting that it may act by binding copper ions. ApoA-IV also inhibited the oxidation of LDL by the water-soluble free-radical generator 2,2'-azobis(amidinopropane) dihydrochloride (AAPH; I mM), as shown by the two-fold increase in the time for half maximal conjugated diene formation (T-1/2; P < 0.05) suggesting it can also scavenge free radicals in the aqueous phase. Compared to wild type apoA-IV, apoA-IV-S347 decreased T-1/2 by 15% (P = 0.036) and apoA-IV-H360 increased T-1/2 by 18% (P = 0.046). All apoA-IV isoforms increased the relative electrophoretic mobility of native LDL, suggesting apoA-IV can bind to LDL and acts as a site-specific antioxidant. The reduced inhibition of LDL oxidation by apoA-IV-S347 compared to wild type apoA-IV may account for the previous association of the APOA4 S347 variant with increased CHD risk and oxidative stress. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Ascorbate does not protect macrophages against apoptosis induced by oxidised low density lipoprotein
Resumo:
Apoptosis of macrophages and smooth muscle cells is observed in atherosclerotic lesions and may play an important role in the disease progression. Oxidised low density lipoprotein (LDL) is cytotoxic and induces apoptosis in a variety of cell types. We reported previously that ascorbate protects arterial smooth muscle cells from apoptosis induced by oxidised LDL containing the peak levels of lipid hydroperoxides. We now demonstrate that macrophages undergo apoptosis when treated with this species of oxidised LDL, as detected by increased annexin V binding and DNA fragmentation. Ascorbate treatment of macrophages did not protect against the cytotoxicity of oxidised LDL, and modestly increased the levels of annexin V binding and DNA fragmentation. Oxidised LDL treatment also increased the expression of the antioxidant stress protein heme oxygenase-1 in macrophages; however, this increase was markedly attenuated by ascorbate pretreatment. Although apoptosis induced by oxidised LDL was modestly promoted by ascorbate, ascorbate apparently decreased the levels of oxidative stress in macrophages, suggesting that this pro-apoptotic effect was not mediated by a pro-oxidant mechanism, but may instead have been due to intracellular protection of the apoptotic machinery by ascorbate. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.
Resumo:
Oxidised low density lipoprotein (LDL) may play a role in atherogenesis. We have investigated some of the mechanisms by which the thiol cysteine and the disulphide cystine can influence the oxidation of LDL by copper ions. Cysteine or cystine (100 PM) inhibited the oxidation of native LDL by copper in a simple phosphate buffer. One of the mechanisms by which cysteine (or more likely its oxidation products in the presence of copper) and cystine inhibited LDL oxidation was by decreasing the binding of copper to LDL (97% inhibition). Cysteine, but not cystine, rapidly reduced Cu2+ to Cu+. This may help to explain the antioxidant effect of cysteine as it may limit the amount of Cu2+ that is available to convert alpha-tocopherol in LDL into the prooxidant alpha-tocopherol radical. Cysteine (but not cystine) had a prooxidant effect, however, toward partially oxidised LDL in the presence of a low copper concentration, which may have been due to the rapid breakdown of lipid hydroperoxides in partially oxidised LDL by Cu+ generated by cysteine. To prove that cysteine can cause the rapid breakdown of lipid hydroperoxides in LDL, we enriched LDL with lipid hydroperoxides using an azo initiator in the absence of copper. Cysteine, but not cystine, increased the rate of lipid hydroperoxide decomposition to thiobarbituric acid-reactive substances (TBARS) in the presence of copper. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We investigated whether oxidation alters the self-aggregation of low density lipoprotein (LDL) and the inhibition of such aggregation by albumin. Incubation with copper for different durations produced mildly, moderately, and highly oxidised LDL (having, respectively, ca. 60, 300 and 160 nmol lipid hydroperoxides/mg protein, and electrophoretic mobilities 1.2, 2.6 and 4.4 times that of native LDL). The rate of flow-induced aggregation was the same for native, mildly oxidised and moderately oxidised LDL, but decreased for highly oxidised LDL. The inhibitory effect of albumin (40 mg/ml) on aggregation was reduced by mild oxidation and further reduced by moderate or severe oxidation. The net result of the two effects was that in the presence of albumin, moderately oxidised LDL had the highest rate of aggregation and native the lowest. The reduction in the anti-aggregatory effect of albumin provides a new mechanism by which LDL oxidation might enhance net aggregation in vivo. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.