34 resultados para Low voltage network
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.
Resumo:
Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.
Resumo:
This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.
Resumo:
More and more households are purchasing electric vehicles (EVs), and this will continue as we move towards a low carbon future. There are various projections as to the rate of EV uptake, but all predict an increase over the next ten years. Charging these EVs will produce one of the biggest loads on the low voltage network. To manage the network, we must not only take into account the number of EVs taken up, but where on the network they are charging, and at what time. To simulate the impact on the network from high, medium and low EV uptake (as outlined by the UK government), we present an agent-based model. We initialise the model to assign an EV to a household based on either random distribution or social influences - that is, a neighbour of an EV owner is more likely to also purchase an EV. Additionally, we examine the effect of peak behaviour on the network when charging is at day-time, night-time, or a mix of both. The model is implemented on a neighbourhood in south-east England using smart meter data (half hourly electricity readings) and real life charging patterns from an EV trial. Our results indicate that social influence can increase the peak demand on a local level (street or feeder), meaning that medium EV uptake can create higher peak demand than currently expected.
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
Smart meters are becoming more ubiquitous as governments aim to reduce the risks to the energy supply as the world moves toward a low carbon economy. The data they provide could create a wealth of information to better understand customer behaviour. However at the household, and even the low voltage (LV) substation level, energy demand is extremely volatile, irregular and noisy compared to the demand at the high voltage (HV) substation level. Novel analytical methods will be required in order to optimise the use of household level data. In this paper we briefly outline some mathematical techniques which will play a key role in better understanding the customer's behaviour and create solutions for supporting the network at the LV substation level.
Resumo:
As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.
Resumo:
Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
Resumo:
The hazards associated with high voltage three phase inverters and the rotating shafts of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the "hands on" instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes cost around $25 and can be made with minimal effort.
Resumo:
The hazards associated with high-voltage three-phase inverters and high-powered large electrical machines have resulted in most of the engineering courses covering three-phase machines and drives theoretically. This paper describes a set of purpose-built, low-voltage, and low-cost teaching equipment that allows the hands-on instruction of three-phase inverters and rotating machines. The motivation for moving towards a system running at low voltages is that the students can safely experiment freely with the motors and inverter. The students can also access all of the current and voltage waveforms, which until now could only be studied in textbooks or observed as part of laboratory demonstrations. Both the motor and the inverter designs are for teaching purposes and require minimal effort and cost
Resumo:
The hazards associated with high voltage three phase inverters ond the rotating sha@s of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the “hands on I’ instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes, cost around $25 and can be made with minimal effort.
Resumo:
The hazards associated with high-voltage three-phase inverters and high-powered large electrical machines have resulted in most of the engineering courses covering three-phase machines and drives theoretically. This paper describes a set of purpose-built, low-voltage, and low-cost teaching equipment that allows the hands-on instruction of three-phase inverters and rotating machines. The motivation for moving towards a system running at low voltages is that the students can safely experiment freely with the motors and inverter. The students can also access all of the current and voltage waveforms, which until now could only be studied in textbooks or observed as part of laboratory demonstrations. Both the motor and the inverter designs are for teaching purposes and require minimal effort and cost.
Resumo:
Housing in the UK accounts for 30.5% of all energy consumed and is responsible for 25% of all carbon emissions. The UK Government’s Code for Sustainable Homes requires all new homes to be zero carbon by 2016. The development and widespread diffusion of low and zero carbon (LZC) technologies is recognised as being a key solution for housing developers to deliver against this zero-carbon agenda. The innovation challenge to design and incorporate these technologies into housing developers’ standard design and production templates will usher in significant technical and commercial risks. In this paper we report early results from an ongoing Engineering and Physical Sciences Research Council project looking at the innovation logic and trajectory of LZC technologies in new housing. The principal theoretical lens for the research is the socio-technical network approach which considers actors’ interests and interpretative flexibilities of technologies and how they negotiate and reproduce ‘acting spaces’ to shape, in this case, the selection and adoption of LZC technologies. The initial findings are revealing the form and operation of the technology networks around new housing developments as being very complex, involving a range of actors and viewpoints that vary for each housing development.
Resumo:
A pass of the AMPTE-UKS satellite through the low-latitude boundary layer (LLBL) at 8:30 MLT is studied in detail. The magnetosheath field is predominantly northward. It is shown that multiple transitions through part or all of the layer of antisunward flow lead to overestimation of both the voltage across this layer and its width. The voltage is estimated to be only about 3 kV and this implies that the full LLBL is about 1200 km thick, consistent with previous studies.
Resumo:
We developed a stochastic simulation model incorporating most processes likely to be important in the spread of Phytophthora ramorum and similar diseases across the British landscape (covering Rhododendron ponticum in woodland and nurseries, and Vaccinium myrtillus in heathland). The simulation allows for movements of diseased plants within a realistically modelled trade network and long-distance natural dispersal. A series of simulation experiments were run with the model, representing an experiment varying the epidemic pressure and linkage between natural vegetation and horticultural trade, with or without disease spread in commercial trade, and with or without inspections-with-eradication, to give a 2 x 2 x 2 x 2 factorial started at 10 arbitrary locations spread across England. Fifty replicate simulations were made at each set of parameter values. Individual epidemics varied dramatically in size due to stochastic effects throughout the model. Across a range of epidemic pressures, the size of the epidemic was 5-13 times larger when commercial movement of plants was included. A key unknown factor in the system is the area of susceptible habitat outside the nursery system. Inspections, with a probability of detection and efficiency of infected-plant removal of 80% and made at 90-day intervals, reduced the size of epidemics by about 60% across the three sectors with a density of 1% susceptible plants in broadleaf woodland and heathland. Reducing this density to 0.1% largely isolated the trade network, so that inspections reduced the final epidemic size by over 90%, and most epidemics ended without escape into nature. Even in this case, however, major wild epidemics developed in a few percent of cases. Provided the number of new introductions remains low, the current inspection policy will control most epidemics. However, as the rate of introduction increases, it can overwhelm any reasonable inspection regime, largely due to spread prior to detection. (C) 2009 Elsevier B.V. All rights reserved.