17 resultados para Low T3 Syndrome
em CentAUR: Central Archive University of Reading - UK
Resumo:
Individuals with Williams syndrome (WS) exhibit striking social behaviour that may be indicative of abnormally low social anxiety. The present research aimed to determine whether social anxiety is unusually low in WS and to replicate previous findings of increased generalised anxiety in WS using both parent and self report. Fifteen individuals with WS aged 12-28 years completed the Spence Children’s Anxiety Scale (SCAS) and the Children’s Automatic Thoughts Scale (CATS). Their responses were compared to clinically anxious and community comparison groups matched on mental age. The findings suggest that WS is not associated with unusually low social anxiety but that generalised anxiety symptoms and physical threat thoughts are increased in WS, relative to typically developing children.
Resumo:
The aim of the study was to assess the relation of adiponectin levels with the metabolic syndrome in Asian Indians, a high-risk group for diabetes and premature coronary artery disease. The study was conducted on 100 (50 men and 50 women) type 2 diabetic subjects and 100 age and sex matched subjects with normal glucose tolerance selected from the Chennai Urban Rural Epidemiology Study, an ongoing population study in Chennai in southern India. Metabolic syndrome was defined using modified Adult Treatment Panel III (ATPIII) guidelines. Adiponectin values were significantly lower in diabetic subjects (men: 5.2 vs 8.3 microg/mL, P=.00l; women: 7.6 vs 11.1 microg/mL, P<.00l) and those with the metabolic syndrome (men: 5.0 vs 6.8 microg/mL, P=.01; women: 6.5 vs 9.9 microg/mL, P=.001) compared with those without. Linear regression analysis revealed adiponectin to be associated with body mass index (P<.05), waist circumference (P<.01), fasting plasma glucose (P=.001), glycated hemoglobin (P<.001), triglycerides (P<.00l), high-density lipoprotein (HDL) cholesterol (P<.001), cholesterol/HDL ratio (P<.00l), and insulin resistance measured by homeostasis assessment model (P<.00l). Factor analysis identified 2 factors: factor 1, negatively loaded with adiponectin and HDL cholesterol and positively loaded with triglycerides, waist circumference, and insulin resistance measured by homeostasis assessment model; and factor 2, with a positive loading of waist circumference and systolic and diastolic blood pressure. Logistic regression analysis revealed adiponectin to be negatively associated with metabolic syndrome (odds ratio [OR], 0.365; P<.001) even after adjusting for age (OR, 0.344; P<.00l), sex (OR, 0.293; P<.001), and body mass index (OR, 0.292; P<.00l). Lower adiponectin levels are associated with the metabolic syndrome per se and several of its components, particularly, diabetes, insulin resistance, and dyslipidemia in this urban south Indian population.
Resumo:
Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.
Resumo:
Aims: The present study investigated whether children with Williams syndrome (WS) produced a higher number of different word roots and low-frequency words in spontaneous speech in a topic controlled setting. Method: A group of children with WS was compared to a group of typically developing children matched for chronological age (CA), and a group of typically developing children matched for receptive language abilities (LA). A further comparison was made between the WS group and a group of children matched for non-verbal abilities (NA). Spontaneous speech was elicited using a narrative task. The data were analysed using three different measures of lexical diversity. The results revealed that the children with WS neither produce a higher number of different word roots nor significantly more low-frequency items in comparison to the CA, LA and NA matched participants. Furthermore, language and non-verbal abilities did not predict the number of different and low frequency words used by the typically developing children, however in the WS group non-verbal abilities predicted the number of low-frequency words and receptive language skills predicted the number of different words produced. It is concluded that individuals with WS do not have unusual vocabularies and that the subdomain of language, lexical semantics, does not seem to be an independent cognitive skill. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Individuals with Williams syndrome (WS) demonstrate impaired visuo-spatial abilities in comparison to their level of verbal ability. In particular, visuo-spatial construction is an area of relative weakness. It has been hypothesised that poor or atypical location coding abilities contribute strongly to the impaired abilities observed on construction and drawing tasks [Farran, E. K., & Jarrold, C. (2005). Evidence for unusual spatial location coding in Williams syndrome: An explanation for the local bias in visuo-spatial construction tasks? Brain and Cognition, 59, 159-172; Hoffman, J. E., Landau, B., & Pagani, B. (2003). Spatial breakdown in spatial construction: Evidence from eye fixations in children with Williams syndrome. Cognitive Psychology, 46, 260-301]. The current experiment investigated location memory in WS. Specifically, the precision of remembered locations was measured as well as the biases and strategies that were involved in remembering those locations. A developmental trajectory approach was employed; WS performance was assessed relative to the performance of typically developing (TD) children ranging from 4- to 8-year-old. Results showed differential strategy use in the WS and TD groups. WS performance was most similar to the level of a TD 4-year-old and was additionally impaired by the addition of physical category boundaries. Despite their low level of ability, the WS group produced a pattern of biases in performance which pointed towards evidence of a subdivision effect, as observed in TD older children and adults. In contrast, the TD children showed a different pattern of biases, which appears to be explained by a normalisation strategy. In summary, individuals with WS do not process locations in a typical manner. This may have a negative impact on their visuo-spatial construction and drawing abilities. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Williams syndrome (WS) is a rare genetic disorder. At a cognitive level, this population display poor visuo-spatial cognition when compared to verbal ability. Within the visuo-spatial domain, it is now accepted that individuals with WS are able to perceive both local and global aspects of an image, albeit at a low level. The present study examines the manner in which local elements are grouped into a global whole in WS. Fifteen individuals with WS and 15 typically developing controls, matched for non-verbal ability, were presented with a matrix of local elements and asked whether these elements were perceptually grouped horizontally or vertically. The WS group was at the same level as the control group when grouping by luminance, closure, and alignment. However, their ability to group by shape, orientation and proximity was significantly poorer than controls. This unusual profile of grouping abilities in WS suggests that these individuals do not form a global percept in a typical manner. (c) 2004 Published by Elsevier Ltd.
Resumo:
The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, and MetS risk and whether plasma fatty acids, a biomarker of dietary fatty acids, modulate this. LEPR polymorphisms (rs10493380, rs1137100, rs1137101, rs12067936, rs1805096, rs2025805, rs3790419, rs3790433, rs6673324, and rs8179183), biochemical measurements, and plasma fatty acid profiles were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). LEPR rs3790433 GG homozygotes had increased MetS risk compared with the minor A allele carriers [odds ratio (OR) = 1.65; 95% CI: 1.05–2.57; P = 0.028], which may be accounted for by their increased risk of elevated insulin concentrations (OR 2.40; 95% CI: 1.28–4.50; P = 0.006) and insulin resistance (OR = 2.15; 95% CI: 1.18–3.90; P = 0.012). Low (less than median) plasma (n-3) and high (n-6) PUFA status exacerbated the genetic risk conferred by GG homozygosity to hyperinsulinemia (OR 2.92–2.94) and insulin resistance (OR 3.40–3.47). Interestingly, these associations were abolished against a high (n-3) or low (n-6) PUFA background. Importantly, we replicated some of these findings in an independent cohort. Homozygosity for the LEPR rs3790433 G allele was associated with insulin resistance, which may predispose to increased MetS risk. Novel gene-nutrient interactions between LEPR rs3790433 and PUFA suggest that these genetic influences were more evident in individuals with low plasma (n-3) or high plasma (n-6) PUFA.
Resumo:
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.
Effects of dietary fat modification on skeletal muscle fatty acid handling in the metabolic syndrome
Resumo:
Objective: In the metabolic syndrome (MetS), increased fat storage in ‘nonadipose’ tissues such as skeletal muscle may be related to insulin resistance (‘lipid overflow’ hypothesis). The objective of this study was to examine the effects of dietary fat modification on the capacity of skeletal muscle to handle dietary and endogenous fatty acids (FAs). Subjects and Methods: In total, 29 men with the MetS were randomly assigned to one of four diets for 12 weeks: a high-fat saturated fat diet (HSFA, n=6), a high-fat monounsaturated fat diet (HMUFA, n=7) and two low-fat high-complex carbohydrate diets supplemented with (LFHCCn−3, n=8) or without (LFHCC, n=8) 1.24 g per day docosahexaenoic and eicosapentaenoic acid. Fasting and postprandial skeletal muscle FA handling was examined by measuring arteriovenous concentration differences across the forearm muscle. [2H2]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free fatty acids in the circulation and subjects received a high-fat mixed meal (2.6 MJ, 61 energy% fat) containing [U-13C]-palmitate to label chylomicron-TAG. Results: Postprandial circulating TAG concentrations were significantly lower after dietary intervention in the LFHCCn−3 group compared to the HSFA group (ΔiAUC −139±67 vs 167±70 μmol l−1 min−1, P=0.009), together with decreased concentrations of [U-13C]-labeled TAG, representing dietary FA. Fasting TAG clearance across forearm muscle was decreased on the HSFA diet, whereas no differences were observed in postprandial forearm muscle FA handling between diets. Conclusion: Chronic manipulation of dietary fat quantity and quality did not affect forearm muscle FA handling in men with the MetS. Postprandial TAG concentrations decreased on the LFHCCn−3 diet, which could be (partly) explained by lower concentration of dietary FA in the circulation.
Resumo:
Hypertension is a key feature of the metabolic syndrome. Lifestyle and dietary changes may affect blood pressure (BP), but the knowledge of the effects of dietary fat modification in subjects with the metabolic syndrome is limited. The objective of the present study was to investigate the effect of an isoenergetic change in the quantity and quality of dietary fat on BP in subjects with the metabolic syndrome. In a 12-week European multi-centre, parallel, randomised controlled dietary intervention trial (LIPGENE), 486 subjects were assigned to one of the four diets distinct in fat quantity and quality: two high-fat diets rich in saturated fat or monounsaturated fat and two low-fat, high-complex carbohydrate diets with or without 1·2 g/d of very long-chain n-3 PUFA supplementation. There were no overall differences in systolic BP (SBP), diastolic BP or pulse pressure (PP) between the dietary groups after the intervention. The high-fat diet rich in saturated fat had minor unfavourable effects on SBP and PP in males.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
Background: Adiponectin gene expression is modulated by peroxisome proliferator–activated receptor γ, which is a transcription factor activated by unsaturated fatty acids. Objective: We investigated the effect of the interaction between variants at the ADIPOQ gene locus, age, sex, body mass index (BMI), ethnicity, and the replacement of dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) or carbohydrates on serum adiponectin concentrations. Design: The RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) study is a parallel-design, randomized controlled trial. Serum adiponectin concentrations were measured after a 4-wk high-SFA (HS) diet and a 24-wk intervention with reference (HS), high-MUFA (HM), and low-fat (LF) diets. Single nucleotide polymorphisms at the ADIPOQ locus −11391 G/A (rs17300539), −10066 G/A (rs182052), −7734 A/C (rs16861209), and +276 G/T (rs1501299) were genotyped in 448 participants. Results: In white Europeans, +276 T was associated with higher serum adiponectin concentrations (n = 340; P = 0.006) and −10066 A was associated with lower serum adiponectin concentrations (n = 360; P = 0.03), after adjustment for age, BMI, and sex. After the HM diet, −10066 G/G subjects showed a 3.8% increase (95% CI: −0.1%, 7.7%) and G/A+A/A subjects a 2.6% decrease (95% CI: −5.6%, 0.4%) in serum adiponectin (P = 0.006 for difference after adjustment for the change in BMI, age, and sex). In −10066 G/G homozygotes, serum adiponectin increased with age after the HM diet and decreased after the LF diet. Conclusion: In white −10066 G/G homozygotes, an HM diet may help to increase adiponectin concentrations with advancing age. This trial was registered at clinicaltrials.gov as ISRCTN29111298.
Resumo:
Background and aims CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
Resumo:
Obesity is a key factor in the development of the metabolic syndrome (MetS), which is associated with increased cardiometabolic risk. We investigated whether obesity classification by body mass index (BMI) and body fat percentage (BF%) influences cardiometabolic profile and dietary responsiveness in 486 MetS subjects (LIPGENE dietary intervention study). Anthropometric measures, markers of inflammation and glucose metabolism, lipid profiles, adhesion molecules and haemostatic factors were determined at baseline and after 12 weeks of 4 dietary interventions (high saturated fat (SFA), high monounsaturated fat (MUFA) and 2 low fat high complex carbohydrate (LFHCC) diets, 1 supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs)). 39% and 87% of subjects classified as normal and overweight by BMI were obese according to their BF%. Individuals classified as obese by BMI (± 30 kg/m2) and BF% (± 25% (men) and ± 35% (women)) (OO, n = 284) had larger waist and hip measurements, higher BMI and were heavier (P < 0.001) than those classified as non-obese by BMI but obese by BF% (NOO, n = 92). OO individuals displayed a more pro-inflammatory (higher C reactive protein (CRP) and leptin), pro-thrombotic (higher plasminogen activator inhibitor-1 (PAI-1)), pro-atherogenic (higher leptin/adiponectin ratio) and more insulin resistant (higher HOMA-IR) metabolic profile relative to the NOO group (P < 0.001). Interestingly, tumour necrosis factor alpha (TNF-α) concentrations were lower post-intervention in NOO individuals compared to OO subjects (P < 0.001). In conclusion, assessing BF% and BMI as part of a metabotype may help identify individuals at greater cardiometabolic risk than BMI alone.