13 resultados para Lotus-japonicus

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The butanol-HCl spectrophotometric assay is widely used for quantifying extractable and insoluble condensed tannins (CT, syn. proanthocyanidins) in foods, feeds, and foliage of herbaceous and woody plants, but the method underestimates total CT content when applied directly to plant material. To improve CT quantitation, we tested various cosolvents with butanol-HCl and found that acetone increased anthocyanidin yields from two forage Lotus species having contrasting procyanidin and prodelphinidin compositions. A butanol-HCl-iron assay run with 50% (v/v) acetone gave linear responses with Lotus CT standards and increased estimates of total CT in Lotus herbage and leaves by up to 3.2-fold over the conventional method run without acetone. The use of thiolysis to determine the purity of CT standards further improved quantitation. Gel-state 13C and 1H–13C HSQC NMR spectra of insoluble residues collected after butanol-HCl assays revealed that acetone increased anthocyanidin yields by facilitating complete solubilization of CT from tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation of bovine serum albumin (BSA), lysozyme (LYS) and alfalfa leaf protein (ALF) by two large- and two medium-sized condensed tannin (CT) fractions of similar flavan-3-ol subunit composition is described. CT fractions isolated from white clover flowers and big trefoil leaves exhibited high purity profiles by 1D/2D NMR and purities >90% (determined by thiolysis). At pH 6.5, large CTs with a mean degree of polymerization (mDP) of ~18 exhibited similar protein precipitation behaviors and were significantly more effective than medium CTs (mDP ~9). Medium CTs exhibited similar capacities to precipitate ALF or BSA, but showed small but significant differences in their capacity to precipitate LYS. All CTs precipitated ALF more effectively than BSA or LYS. Aggregation of CT-protein complexes likely aided precipitation of ALF and BSA, but not LYS. This study, one of the first to use CTs of confirmed high purity, demonstrates that mDP of CTs influences protein precipitation efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Adaptation of plant populations to local environments has been shown in many species but local adaptation is not always apparent and spatial scales of differentiation are not well known. In a reciprocal transplant experiment we tested whether: (i) three widespread grassland species are locally adapted at a European scale; (ii) detection of local adaptation depends on competition with the local plant community; and (iii) local differentiation between neighbouring populations from contrasting habitats can be stronger than differentiation at a European scale. 2 Seeds of Holcus lanatus, Lotus corniculatus and Plantago lanceolata from a Swiss, Czech and UK population were sown in a reciprocal transplant experiment at fields that exhibit environmental conditions similar to the source sites. Seedling emergence, survival, growth and reproduction were recorded for two consecutive years. 3 The effect of competition was tested by comparing individuals in weeded monocultures with plants sown together with species from the local grassland community. To compare large-scale vs. small-scale differentiation, a neighbouring population from a contrasting habitat (wet-dry contrast) was compared with the 'home' and 'foreign' populations. 4 In P. lanceolata and H. lanatus, a significant home-site advantage was detected in fitness-related traits, thus indicating local adaptation. In L. corniculatus, an overall superiority of one provenance was found. 5 The detection of local adaptation depended on competition with the local plant community. In the absence of competition the home-site advantage was underestimated in P. lanceolata and overestimated in H. lanatus. 6 A significant population differentiation between contrasting local habitats was found. In some traits, this small-scale was greater than large-scale differentiation between countries. 7 Our results indicate that local adaptation in real plant communities cannot necessarily be predicted from plants grown in weeded monocultures and that tests on the relationship between fitness and geographical distance have to account for habitat-dependent small-scale differentiation. Considering the strong small-scale differentiation, a local provenance from a different habitat may not be the best choice in ecological restoration if distant populations from a more similar habitat are available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and ( abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume ( Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unusual catalase-positive, Gram-positive, coccus-shaped bacterium that originated from a human blood specimen was subjected to a polyphasic taxonomic study. Cell-wall murein and lipid composition analyses indicated that the unknown isolate was a member of the genus Luteococcus. The results of comparative 16S rRNA gene sequence analysis were consistent with chemotaxonomic findings and showed that the unidentified bacterium represents a hitherto unknown sublineage, within the genus Luteococcus that is closely related to, but distinct from, Luteococcus japonicus. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown bacterium from human blood should be classified as Luteococcus sanguinis sp. nov., with the type strain CCUG 33897(T) (=CIP 107216(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of natural plant anthelmintics was suggested as a possible alternative control of gastrointestinal nematodes (GIN) in ruminants. Direct anthelmintic effects of tannin-containing plants have already been shown in sheep and goat GIN. These anthelmintic properties are mainly associated with condensed tannins. In the present study, we evaluated possible in vitro effects of three tannin-containing plants against bovine GIN. Effects of Onobrychis viciifolia, Lotus pedunculatus and Lotus corniculatus condensed tannin (CT) extracts on Cooperia oncophora and Ostertagia ostertagi were determined by a larval feeding inhibition assay (LFIA) and a larval exsheathment assay (LEA). In the LFIA, all three plant extracts significantly inhibited larval feeding behaviour of both C. oncophora and O. ostertagi first stage larvae in a dose-dependent manner. The L. pedunculatus extract, based on EC50 (effective concentration for 50% inhibition), was the most effective against both nematodes, followed by O. viciifolia and L. corniculatus. The effect of CT extracts upon larval feeding behaviour correlates with CT content and procyanidin/prodelphidin ratio. Larval exsheathment of C. oncophora and O. ostertagi L3 larvae (third stage larvae) was also affected by CT extracts from all three plants. In both in vitro assays, extracts with added polyvinylpolypyrrolidone, an inhibitor of tannins, generated almost the same values as the negative control; this confirms the role of CT in the anthelmintic effect of these plant extracts. Our results, therefore, indicated that tannin-containing plants could act against cattle nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 × 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g kg −1 DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg day −1). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g kg −1) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. −4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g kg −1), 18% lower DMD (P < 0.01, 585 vs. 713 g kg −1), 42% lower CPD (P < 0.001, 407 vs. 699 g kg −1), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g kg −1 DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six Australian native herbaceous perennial legumes (Lotus australis, Swainsona colutoides, Swainsona swainsonioides, Cullen tenax, Glycine tabacina and Kennedia prorepens) were assessed in the glasshouse for nutritive value, soluble condensed tannins and production of herbage in response to three cutting treatments (regrowth harvested every 4 and 6 weeks and plants left uncut for 12 weeks). The Mediterranean perennial legumes Medicago sativa and Lotus corniculatus were also included. Dry matter (DM) yield of some native legumes was comparable to L. corniculatus, but M. sativa produced more DM than all species except S. swainsonioides after 12 weeks of regrowth. Dry matter yield of all native legumes decreased with increased cutting frequency, indicating a susceptibility to frequent defoliation. Shoot in vitro dry matter digestibility (DMD) was high (>70%) in most native legumes, except G. tabacina (65%) and K. prorepens (55%). Crude protein ranged from 21-28% for all legumes except K. prorepens (12%). More frequent cutting resulted in higher DMD and crude protein in all species, except for the DMD of C. tenax and L. australis, which did not change. Concentrations of soluble condensed tannins were 2-9 g/kg DM in the Lotus spp., 10-18 g/kg DM in K. prorepens and negligible (<1 g/kg) in the other legumes. Of the native species, C. tenax, S. swainsonioides and L. australis showed the most promise for use as forage plants and further evaluation under field conditions is now warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.