47 resultados para Long distance run
em CentAUR: Central Archive University of Reading - UK
Resumo:
The importance of dispersal for the maintenance of biodiversity, while long-recognized, has remained unresolved. We used molecular markers to measure effective dispersal in a natural population of the vertebrate-dispersed Neotropical tree, Simarouba amara (Simaroubaceae) by comparing the distances between maternal parents and their offspring and comparing gene movement via seed and pollen in the 50 ha plot of the Barro Colorado Island forest, Central Panama. In all cases (parent-pair, mother-offspring, father-offspring, sib-sib) distances between related pairs were significantly greater than distances to nearest possible neighbours within each category. Long-distance seedling establishment was frequent: 74% of assigned seedlings established > 100 m from the maternal parent [mean = 392 +/- 234.6 m (SD), range = 9.3-1000.5 m] and pollen-mediated gene flow was comparable to that of seed [mean = 345.0 +/- 157.7 m (SD), range 57.6-739.7 m]. For S. amara we found approximately a 10-fold difference between distances estimated by inverse modelling and mean seedling recruitment distances (39 m vs. 392 m). Our findings have important implications for future studies in forest demography and regeneration, with most seedlings establishing at distances far exceeding those demonstrated by negative density-dependent effects.
Globalizing late antiquity: models, metaphors and the realities of long-distance trade and diplomacy
Resumo:
Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.
Resumo:
We developed a stochastic simulation model incorporating most processes likely to be important in the spread of Phytophthora ramorum and similar diseases across the British landscape (covering Rhododendron ponticum in woodland and nurseries, and Vaccinium myrtillus in heathland). The simulation allows for movements of diseased plants within a realistically modelled trade network and long-distance natural dispersal. A series of simulation experiments were run with the model, representing an experiment varying the epidemic pressure and linkage between natural vegetation and horticultural trade, with or without disease spread in commercial trade, and with or without inspections-with-eradication, to give a 2 x 2 x 2 x 2 factorial started at 10 arbitrary locations spread across England. Fifty replicate simulations were made at each set of parameter values. Individual epidemics varied dramatically in size due to stochastic effects throughout the model. Across a range of epidemic pressures, the size of the epidemic was 5-13 times larger when commercial movement of plants was included. A key unknown factor in the system is the area of susceptible habitat outside the nursery system. Inspections, with a probability of detection and efficiency of infected-plant removal of 80% and made at 90-day intervals, reduced the size of epidemics by about 60% across the three sectors with a density of 1% susceptible plants in broadleaf woodland and heathland. Reducing this density to 0.1% largely isolated the trade network, so that inspections reduced the final epidemic size by over 90%, and most epidemics ended without escape into nature. Even in this case, however, major wild epidemics developed in a few percent of cases. Provided the number of new introductions remains low, the current inspection policy will control most epidemics. However, as the rate of introduction increases, it can overwhelm any reasonable inspection regime, largely due to spread prior to detection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ship is the dominant element in the visual culture of the South Scandinavian Bronze Age, appearing in several different media, including rock carvings, decorated metalwork and above-ground monuments. Discussion has divided between those scholars who interpret this imagery in terms of long-distance exchange networks and those who emphasize its more local significance, including its deployment in mortuary ritual. A strikingly similar system is identified in Southeast Asia and part of Melanesia and can be interpreted through archaeological and ethnographic sources, but in this case there is no need to distinguish between 'practical' and 'symbolic' interpretations of the depictions of ships. This paper summarizes the evidence from this region and suggests that it can offer a fruitful source of comparison for archaeologists working in northern Europe.
Resumo:
Global dust trajectories indicate that significant quantities of aeolian-transported iron oxides originate in contemporary dryland areas. One potential source is the iron-rich clay coatings that characterize many sand-sized particles in desert dunefields. This paper uses laboratory experiments to determine the rate at which these coatings can be removed from dune sands by aeolian abrasion. The coatings impart a red colour to the grains to which previous researchers have assigned variable geomorphological significance. The quantities or iron removed during a 120 hour abrasion experiment are small (99 mg kg(-1)) and difficult to detect by eye; however, high resolution spectroscopy clearly indicates that ferric oxides are released during abrasion and the reflectance of the particles alters. One of the products of aeolian abrasion is fine particles (<10 mum diameter) with the potential for long distance transport. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. ne degree of compensation in the northern extratropics was found to increase with increasing, time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland-Iceland-Norwegian (GIN) Seas. which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.
Resumo:
A recent phylogenetic study based on multiple datasets is used as the framework for a more detailed examination of one of the ten molecularly circumscribed groups identified, the Ophrys fuciflora aggregate. The group is highly morphologically variable, prone to phenotypic convergence, shows low levels of sequence divergence and contains an unusually large proportion of threatened taxa, including the rarest Ophrys species in the UK. The aims of this study were to (a) circumscribe minimum resolvable genetically distinct entities within the O. fuciflora aggregate, and (b) assess the likelihood of gene flow between genetically and geographically distinct entities at the species and population levels. Fifty-five accessions sampled in Europe and Asia Minor from the O. fuciflora aggregate were studied using the AFLP genetic fingerprinting technique to evaluate levels of infraspecific and interspecific genetic variation and to assess genetic relationships between UK populations of O. fuciflora s.s. in Kent and in their continental European and Mediterranean counterparts. The two genetically and geographically distinct groups recovered, one located in England and central Europe and one in south-eastern Europe, are incongruent with current species delimitation within the aggregate as a whole and also within O. fuciflora s.s. Genetic diversity is higher in Kent than in the rest of western and central Europe. Gene flow is more likely to occur between populations in closer geographical proximity than those that are morphologically more similar. Little if any gene flow occurs between populations located in the south-eastern Mediterranean and those dispersed throughout the remainder of the distribution, revealing a genetic discontinuity that runs north-south through the Adriatic. This discontinuity is also evident in other clades of Ophrys and is tentatively attributed to the long-term influence of prevailing winds on the long-distance distribution of pollinia and especially seeds. A cline of gene flow connects populations from Kent and central and southern Europe; these individuals should therefore be considered part of an extensive meta-population. Gene flow is also evident among populations from Kent, which appear to constitute a single metapopulation. They show some evidence of hybridization, and possibly also introgression, with O. apifera.
Resumo:
Figs and fig-pollinating wasps are obligate mutualists that have coevolved for over 60 million years. But when and where did pollinating fig wasps (Agaonidae) originate? Some studies suggest that agaonids arose in the Late Cretaceous and the current distribution of fig-wasp faunas can be explained by the break-up of the Gondwanan landmass. However, recent molecular-dating studies suggest divergence time estimates that are inconsistent with the Gondwanan vicariance hypothesis and imply that long distance oceanic dispersal could have been an important process for explaining the current distribution of both figs and fig wasps. Here, we use a combination of phylogenetic and biogeographical data to infer the age, the major period of diversification, and the geographic origin of pollinating fig wasps. Age estimates ranged widely depending on the molecular-dating method used and even when using the same method but with slightly different constraints, making it difficult to assess with certainty a Gondwanan origin of agaonids. The reconstruction of ancestral areas suggests that the most recent common ancestor of all extant fig-pollinating wasps was most likely Asian, although a southern Gondwana origin cannot be rejected. Our analysis also suggests that dispersal has played a more important role in the development of the fig-wasp biota than previously assumed. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Phytophthora ramorum is a damaging invasive plant pathogen and was first discovered in the UK in 2002. Spatial point analyses were applied to the occurrence of this disease in England and Wales during the period of 2003-2006 in order to assess its spatio-temporal spread. Out of the 4301 garden centres and nurseries (GCN) surveyed, there were 164, 105, 123 and 41 sites with P. ramorum in 2003, 2004, 2005 and 2006, respectively. Spatial analysis of the observed point patterns of GCN outbreaks suggested that these sites were significantly clumped within a radius of ca 60 km in 2003, but not in later years. Further analyses were conducted to determine the relationship of GCN outbreak sites over two consecutive years and thus to infer possible disease spread over time. This analysis suggested that disease spread among GCN sites was most likely to have occurred within a distance of 60 km for 2003-2004, but not for the later years. There were 35, 63, 81 and 58 sites with P. ramorum in the semi-natural environment (SNE). Analyses were carried out to assess whether infected GCN sites could act as an inoculum source of infected SNE plants or vice versa. In all years, there was a significant spatial closeness among GCN and SNE outbreak sites within a distance of 1 km. But a significant relationship over a longer distance (within 60 km) was only observed between cases in 2003 and 2004. These analyses suggest that statutory actions taken so far appear to have reduced the extent of long-distance spread of P. ramorum among garden centres and nurseries, but not the disease spread at a shorter distance between GCN and SNE sites.
Resumo:
The release of genetically modified plants is governed by regulations that aim to provide an assessment of potential impact on the environment. One of the most important components of this risk assessment is an evaluation of the probability of gene flow. In this review, we provide an overview of the current literature on gene flow from transgenic plants, providing a framework of issues for those considering the release of a transgenic plant into the environment. For some plants gene flow from transgenic crops is well documented, and this information is discussed in detail in this review. Mechanisms of gene flow vary from plant species to plant species and range from the possibility of asexual propagation, short- or long-distance pollen dispersal mediated by insects or wind and seed dispersal. Volunteer populations of transgenic plants may occur where seed is inadvertently spread during harvest or commercial distribution. If there are wild populations related to the transgenic crop then hybridization and eventually introgression in the wild may occur, as it has for herbicide resistant transgenic oilseed rape (Brassica napus). Tools to measure the amount of gene flow, experimental data measuring the distance of pollen dispersal, and experiments measuring hybridization and seed survivability are discussed in this review. The various methods that have been proposed to prevent gene flow from genetically modified plants are also described. The current "transgenic traits'! in the major crops confer resistance to herbicides and certain insects. Such traits could confer a selective advantage (an increase in fitness) in wild plant populations in some circumstances, were gene flow to occur. However, there is ample evidence that gene flow from crops to related wild species occurred before the development of transgenic crops and this should be taken into account in the risk assessment process.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
Molecular phylogenetic hypotheses of species-rich lineages in regions where geological history can be reliably inferred may provide insights into the scale of processes driving diversification. Here we sample all extant or recently extinct white-eye (Zosterops) taxa of the southwest Indian Ocean, combined with samples from all principal continental lineages. Results support a high dispersal capability, with at least two independent continental sources for white-eyes of the region. An early (within 1.8 million years ago) expansion into the Indian Ocean may have originated either from Asia or Africa; the three resulting lineages show a disparate distribution consistent with considerable extinction following their arrival. Africa is supported as the origin of a later expansion into the region (within 1.2 million years ago). On two islands, a pair of Zosterops species derived from independent immigrations into the Indian Ocean co-occur or may have formerly co-occurred, providing strong support for their origin by double-island colonization rather than within-island (sympatric or microallopatric) speciation. On Mauritius and La Reunion, phylogenetic placement of sympatric white-eyes allow us to rule out a scenario in which independent within-island speciation occurred on both islands; one of the species pairs must have arisen by double colonization, while the other pair is likely to have arisen by the same mechanism. Long-distance immigration therefore appears to be responsible for much of the region's white-eye diversity. Independent immigrations into the region have resulted in lineages with mutually exclusive distributions and it seems likely that competition with congeneric species, rather than arrival frequency, may limit present-day diversity.
Resumo:
Waterbirds have been proposed as important vectors for the passive dispersal of those aquatic invertebrates and plants that lack a capacity for active dispersal between isolated water bodies. We analysed the frequency of internal transport of bryozoan propagules (statoblasts) by waterbirds in Donana, Spain, by examining their presence in the intestines and ceca of dead birds and analysing the role of different aspects of gut characteristics in explaining variation in the presence/absence and abundance of statoblasts. Of the 228 samples examined, 7.9% presented intact statoblasts of Plumatella fungosa (Pallas, 1768), Plumatella emarginata Allman, 1844, and two unidentified Plumatella species. For a given bird species, individuals with heavier gizzards and shorter ceca had a lower incidence and abundance of statoblasts in the lower gut. Grit mass and intestine length were unrelated to the presence or abundance of statoblasts. Our results suggest that waterbirds frequently transport bryozoans on a local scale, with lighter gizzards and longer ceca favouring such transport. Lighter gizzards are likely to destroy fewer propagules before they reach the lower gut. Species and individuals with longer ceca are particularly good candidates for long-distance dispersal of bryozoans, given the longer passage time of propagules that enter the ceca.