53 resultados para Logarithmic Least Squares Method
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper a modified algorithm is suggested for developing polynomial neural network (PNN) models. Optimal partial description (PD) modeling is introduced at each layer of the PNN expansion, a task accomplished using the orthogonal least squares (OLS) method. Based on the initial PD models determined by the polynomial order and the number of PD inputs, OLS selects the most significant regressor terms reducing the output error variance. The method produces PNN models exhibiting a high level of accuracy and superior generalization capabilities. Additionally, parsimonious models are obtained comprising a considerably smaller number of parameters compared to the ones generated by means of the conventional PNN algorithm. Three benchmark examples are elaborated, including modeling of the gas furnace process as well as the iris and wine classification problems. Extensive simulation results and comparison with other methods in the literature, demonstrate the effectiveness of the suggested modeling approach.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
Six parameters uniquely describe the orbit of a body about the Sun. Given these parameters, it is possible to make predictions of the body's position by solving its equation of motion. The parameters cannot be directly measured, so they must be inferred indirectly by an inversion method which uses measurements of other quantities in combination with the equation of motion. Inverse techniques are valuable tools in many applications where only noisy, incomplete, and indirect observations are available for estimating parameter values. The methodology of the approach is introduced and the Kepler problem is used as a real-world example. (C) 2003 American Association of Physics Teachers.
Resumo:
Parameters to be determined in a least squares refinement calculation to fit a set of observed data may sometimes usefully be `predicated' to values obtained from some independent source, such as a theoretical calculation. An algorithm for achieving this in a least squares refinement calculation is described, which leaves the operator in full control of the weight that he may wish to attach to the predicate values of the parameters.
Resumo:
The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
A novel partitioned least squares (PLS) algorithm is presented, in which estimates from several simple system models are combined by means of a Bayesian methodology of pooling partial knowledge. The method has the added advantage that, when the simple models are of a similar structure, it lends itself directly to parallel processing procedures, thereby speeding up the entire parameter estimation process by several factors.
Resumo:
We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.