14 resultados para Locally Nilpotent Derivations
em CentAUR: Central Archive University of Reading - UK
Resumo:
A model of sugarcane digestion was applied to indicate the suitability of various locally available supplements for enhancing milk production of Indian crossbred dairy cattle. Milk production was calculated according to simulated energy, lipogenic, glucogenic and aminogenic substrate availability. The model identified the most limiting substrate for milk production from different sugarcane-based diets. For sugarcane tops/urea fed alone, milk production was most limited by amino acid followed by long chain fatty acid availability. Among the protein-rich oil cake supplements at 100, 200 and 300 g supplement/kg total DM, cottonseed oil cake proved superior with a milk yield of 5.5, 7.3 and 8.3 kg/day, respectively. This was followed by mustard oil cake with 5.1, 6.5 and 7.6 kg/day, respectively. In the case of a protein-rich supplement (fish meal), milk yield was limited to 6.6 kg/day due to a shortage of long chain fatty acids. However, at 300 g of supplementation, energy became limiting, with a milk yield of 6.7 kg/day. Supplementation with rice bran and rice polishings at 100, 200 and 300 g restricted milk yield to 4.3, 4.9 and 5.5 and 4.5, 5.3 and 6.1 kg/day, respectively, and amino acids became the factor limiting milk production. The diet comprising basal sugarcane tops supplemented by leguminous fodder, dry fodder (e.g. rice or wheat straw) and concentrates at levels of 100, 200 and 300 g supplements/kg total diet DM proved to be the most balanced with a milk yield of 5.1, 6.7 and 9.0 kg/day, respectively.
Resumo:
A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
This paper introduces a new variant of the popular n-dimensional hypercube network Q(n), known as the n-dimensional locally twisted cube LTQ(n), which has the same number of nodes and the same number of connections per node as Q(n). Furthermore. LTQ(n) is similar to Q(n) in the sense that the nodes can be one-to-one labeled with 0-1 binary sequences of length n. so that the labels of any two adjacent nodes differ in at most two successive bits. One advantage of LTQ(n) is that the diameter is only about half of the diameter of Q(n) We develop a simple routing algorithm for LTQ(n), which creates a shortest path from the source to the destination in O(n) time. We find that LTQ(n) consists of two disjoint copies of Q(n) by adding a matching between their nodes. On this basis. we show that LTQ(n) has a connectivity of n.
Resumo:
The locally twisted cube is a newly introduced interconnection network for parallel computing. Ring embedding is an important issue for evaluating the performance of an interconnection network. In this paper, we investigate the problem of embedding rings into a locally twisted cube. Our main contribution is to find that, for each integer l is an element of (4,5,...,2(n)}, a ring of length I can be embedded into an n-dimensional locally twisted cube so that both the dilation and the load factor are one. As a result, a locally twisted cube is Hamiltonian. We conclude that a locally twisted cube is superior to a hypercube in terms of ring embedding capability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.
Resumo:
We study the boundedness of Toeplitz operators $T_a$ with locally integrable symbols on Bergman spaces $A^p(\mathbb{D})$, $1 < p < \infty$. Our main result gives a sufficient condition for the boundedness of $T_a$ in terms of some ``averages'' (related to hyperbolic rectangles) of its symbol. If the averages satisfy an ${o}$-type condition on the boundary of $\mathbb{D}$, we show that the corresponding Toeplitz operator is compact on $A^p$. Both conditions coincide with the known necessary conditions in the case of nonnegative symbols and $p=2$. We also show that Toeplitz operators with symbols of vanishing mean oscillation are Fredholm on $A^p$ provided that the averages are bounded away from zero, and derive an index formula for these operators.
Resumo:
We extend the a priori error analysis of Trefftz-discontinuous Galerkin methods for time-harmonic wave propagation problems developed in previous papers to acoustic scattering problems and locally refined meshes. To this aim, we prove refined regularity and stability results with explicit dependence of the stability constant on the wave number for non convex domains with non connected boundaries. Moreover, we devise a new choice of numerical flux parameters for which we can prove L2-error estimates in the case of locally refined meshes near the scatterer. This is the setting needed to develop a complete hp-convergence analysis.
Resumo:
We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.
Resumo:
Traditional derivations of available potential energy, in a variety of contexts, involve combining some form of mass conservation together with energy conservation. This raises the questions of why such constructions are required in the first place, and whether there is some general method of deriving the available potential energy for an arbitrary fluid system. By appealing to the underlying Hamiltonian structure of geophysical fluid dynamics, it becomes clear why energy conservation is not enough, and why other conservation laws such as mass conservation need to be incorporated in order to construct an invariant, known as the pseudoenergy, that is a positive‐definite functional of disturbance quantities. The available potential energy is just the non‐kinetic part of the pseudoenergy, the construction of which follows a well defined algorithm. Two notable features of the available potential energy defined thereby are first, that it is a locally defined quantity, and second, that it is inherently definable at finite amplitude (though one may of course always take the small‐amplitude limit if this is appropriate). The general theory is made concrete by systematic derivations of available potential energy in a number of different contexts. All the well known expressions are recovered, and some new expressions are obtained. The possibility of generalizing the concept of available potential energy to dynamically stable basic flows (as opposed to statically stable basic states) is also discussed.