19 resultados para Localization real-world challenges
em CentAUR: Central Archive University of Reading - UK
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
Ever since man invented writing he has used text to store and distribute his thoughts. With the advent of computers and the Internet the delivery of these messages has become almost instant. Textual conversations can now be had regardless of location or distance. Advances in computational power for 3D graphics are enabling Virtual Environments(VE) within which users can become increasingly more immersed. By opening these environments to other users such as initially through sharing these text conversations channels, we aim to extend the immersed experience into an online virtual community. This paper examines work that brings textual communications into the VE, enabling interaction between the real and virtual worlds.
Resumo:
Current state-of-the-art global climate models produce different values for Earth’s mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. For example, observed global temperatures over the past decade are towards the lower end of the range of CMIP5 simulations irrespective of what reference period is used, but exactly where they lie in the model distribution varies with the choice of reference period. Additionally, we demonstrate that projections of when particular temperature levels are reached, for example 2K above ‘pre-industrial’, change by up to a decade depending on the choice of reference period. In this article we discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections. We highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.
Resumo:
Skillful and timely streamflow forecasts are critically important to water managers and emergency protection services. To provide these forecasts, hydrologists must predict the behavior of complex coupled human–natural systems using incomplete and uncertain information and imperfect models. Moreover, operational predictions often integrate anecdotal information and unmodeled factors. Forecasting agencies face four key challenges: 1) making the most of available data, 2) making accurate predictions using models, 3) turning hydrometeorological forecasts into effective warnings, and 4) administering an operational service. Each challenge presents a variety of research opportunities, including the development of automated quality-control algorithms for the myriad of data used in operational streamflow forecasts, data assimilation, and ensemble forecasting techniques that allow for forecaster input, methods for using human-generated weather forecasts quantitatively, and quantification of human interference in the hydrologic cycle. Furthermore, much can be done to improve the communication of probabilistic forecasts and to design a forecasting paradigm that effectively combines increasingly sophisticated forecasting technology with subjective forecaster expertise. These areas are described in detail to share a real-world perspective and focus for ongoing research endeavors.
Resumo:
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.
Resumo:
Momentum strategies have the potential to generate extra profits in private real estate markets. Tests of a variety of frequencies of portfolio reweighting identify periods of winner and loser performance. There are strong potential gains from momentum strategies that are based on prior returns over a 6- to 12-month period. Whether these gains are attainable for real-world investors depends on transaction costs, but some momentum strategies do produce net excess returns. The findings hold even if returns are unsmoothed to reflect underlying market prices.
Resumo:
In this paper we describe how to cope with the delays inherent in a real time control system for a steerable stereo head/eye platform. A purposive and reactive system requires the use of fast vision algorithms to provide the controller with the error signals to drive the platform. The time-critical implementation of these algorithms is necessary, not only to enable short latency reaction to real world events, but also to provide sufficiently high frequency results with small enough delays that controller remain stable. However, even with precise knowledge of that delay, nonlinearities in the plant make modelling of that plant impossible, thus precluding the use of a Smith Regulator. Moreover, the major delay in the system is in the feedback (image capture and vision processing) rather than feed forward (controller) loop. Delays ranging between 40msecs and 80msecs are common for the simple 2D processes, but might extend to several hundred milliseconds for more sophisticated 3D processes. The strategy presented gives precise control over the gaze direction of the cameras despite the lack of a priori knowledge of the delays involved. The resulting controller is shown to have a similar structure to the Smith Regulator, but with essential modifications.
Resumo:
Exascale systems are the next frontier in high-performance computing and are expected to deliver a performance of the order of 10^18 operations per second using massive multicore processors. Very large- and extreme-scale parallel systems pose critical algorithmic challenges, especially related to concurrency, locality and the need to avoid global communication patterns. This work investigates a novel protocol for dynamic group communication that can be used to remove the global communication requirement and to reduce the communication cost in parallel formulations of iterative data mining algorithms. The protocol is used to provide a communication-efficient parallel formulation of the k-means algorithm for cluster analysis. The approach is based on a collective communication operation for dynamic groups of processes and exploits non-uniform data distributions. Non-uniform data distributions can be either found in real-world distributed applications or induced by means of multidimensional binary search trees. The analysis of the proposed dynamic group communication protocol has shown that it does not introduce significant communication overhead. The parallel clustering algorithm has also been extended to accommodate an approximation error, which allows a further reduction of the communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing elements.
Resumo:
This work presents a method of information fusion involving data captured by both a standard CCD camera and a ToF camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time of light information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localization. Further development of these methods will make it possible to identify objects and their position in the real world, and to use this information to prevent possible collisions between the robot and such objects.
Resumo:
During the last 30 years, significant debate has taken place regarding multilevel research. However, the extent to which multilevel research is overtly practiced remains to be examined. This article analyzes 10 years of organizational research within a multilevel framework (from 2001 to 2011). The goals of this article are (a) to understand what has been done, during this decade, in the field of organizational multilevel research and (b) to suggest new arenas of research for the next decade. A total of 132 articles were selected for analysis through ISI Web of Knowledge. Through a broad-based literature review, results suggest that there is equilibrium between the amount of empirical and conceptual papers regarding multilevel research, with most studies addressing the cross-level dynamics between teams and individuals. In addition, this study also found that the time still has little presence in organizational multilevel research. Implications, limitations, and future directions are addressed in the end. Organizations are made of interacting layers. That is, between layers (such as divisions, departments, teams, and individuals) there is often some degree of interdependence that leads to bottom-up and top-down influence mechanisms. Teams and organizations are contexts for the development of individual cognitions, attitudes, and behaviors (top-down effects; Kozlowski & Klein, 2000). Conversely, individual cognitions, attitudes, and behaviors can also influence the functioning and outcomes of teams and organizations (bottom-up effects; Arrow, McGrath, & Berdahl, 2000). One example is when the rewards system of one organization may influence employees’ intention to quit and the existence or absence of extra role behaviors. At the same time, many studies have showed the importance of bottom-up emergent processes that yield higher level phenomena (Bashshur, Hernández, & González-Romá, 2011; Katz-Navon & Erez, 2005; Marques-Quinteiro, Curral, Passos, & Lewis, in press). For example, the affectivity of individual employees may influence their team’s interactions and outcomes (Costa, Passos, & Bakker, 2012). Several authors agree that organizations must be understood as multilevel systems, meaning that adopting a multilevel perspective is fundamental to understand real-world phenomena (Kozlowski & Klein, 2000). However, whether this agreement is reflected in practicing multilevel research seems to be less clear. In fact, how much is known about the quantity and quality of multilevel research done in the last decade? The aim of this study is to compare what has been proposed theoretically, concerning the importance of multilevel research, with what has really been empirically studied and published. First, this article outlines a review of the multilevel theory, followed by what has been theoretically “put forward” by researchers. Second, this article presents what has really been “practiced” based on the results of a review of multilevel studies published from 2001 to 2011 in business and management journals. Finally, some barriers and challenges to true multilevel research are suggested. This study contributes to multilevel research as it describes the last 10 years of research. It quantitatively depicts the type of articles being written, and where we can find the majority of the publications on empirical and conceptual work related to multilevel thinking.
Resumo:
This work presents a method of information fusion involving data captured by both a standard charge-coupled device (CCD) camera and a time-of-flight (ToF) camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time-of-flight information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time, this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localisation. Further development of these methods will make it possible to identify objects and their position in the real world and to use this information to prevent possible collisions between the robot and such objects.