29 resultados para Local electronic structures
em CentAUR: Central Archive University of Reading - UK
Resumo:
A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.
Resumo:
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.
Resumo:
The readily available complex 1,1-dibromo-2-ferrocenylethylene provides a convenient entry point for the preparation of a wide range of cross-conjugated 1,1-bis(alkynyl)-2-ferrocenylethenes through simple Pd(0)/Cu(I)-mediated cross-coupling reactions with 1-alkynes. The ferrocene moiety in compounds of the general form FcCHC(CCR)2 is essentially electronically isolated from the cross-conjugated π system, as evidenced by IR and UV−vis spectroelectrochemical experiments and quantum chemical calculations. In contrast to the other examples which give stable ferrocenium derivatives upon electrochemical oxidation, the aniline derivatives [FcCHC(CCC6H4NH2-4)2]+ and [FcCHC(CCC6H4NMe2-4)2]+ proved to be unstable on the time scale of the spectroelectrochemical experiments, leading to passivation of the electrode surface over time. There is no significant thermodynamic stabilization of the radical anion [FcCHC(CCC6H4NO2-4)2]− relative to the neutral and dianionic analogues, although the dianion [FcCHC(CCC6H4NO2- 4)2]2− could be studied as a relatively chemically stable species and is well described in terms of two linked nitrophenyl radicals. The capacity to introduce a relatively isolated point charge at the periphery of the cross-conjugated π system appears to make these complexes useful templates for the construction of electrochemically gated quantum interference transistors.
Resumo:
The complexes [Ru(1-C=C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C C-1,12-C2B10H11)(dppe)-Cp*] (3b), [{Ru(dppe)Cp*}(2){mu-1,10-(C C)(2)-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}(2){mu-1,12-(C C)2- 1,12-C2B10-H-10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the dethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-is-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a](+) and [4b](+) through interactions between the metal centers across a distance of ca. 12.5 angstrom. The mono-oxidized bimetallic complexes (4a](+) and [4b](+) exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an, IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H](+) and [4b-H](+) featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a](+) and [4b](+).
Resumo:
The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.
Resumo:
Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C CC6F5)(dppe)Cp'[Cp' = Cp (2); Cp* (3)], which are related to the known compound Ru(C CC6F5)(PPh3)(2)Cp (1). Treatment of Me3SiC CC6F5 with Pt-2(mu-dppm)(2)Cl-2 in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt-2(mu-dppm)(2)(C CC6F5)(2) (4). The Pd(0)/Cu(I)-catalysed reactions between Au(C CC6F5)(PPh3) and Mo( CBr)(CO)(2) Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co-3(mu(3)-CBr)(mu-dppm)(CO)(7) or IC CFc [Fc = (eta(5)-C5H4)FeCp] afford Mo( CC CC6F5)(CO)(2)Tp* (5), Co-3(mu 3-CC CC6F5)(mu-dppm)(CO)(7) (6) and FcC CC CC6F5 (7), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC C}(2)C6F4 [(PP)Cp'=(PPh3)(2)Cp (8); (dppe)Cp (9); (dppe)Cp* (10)] are prepared from 1,4-(Me3SiC C)(2)C6F4 in a manner similar to that described for the monoruthenium complexes 1-3. The non-fluorinated complexes 1,4-{Cp'(PP)RuC C}(2)C6H4 [(PP)Cp' = (PPh3)(2)Cp (11); ( dppe) Cp (12); ( dppe) Cp* (13)], prepared for comparison, are obtained from 1,4-(Me3SiC C)(2)C6H4. Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes 2-3 and 8-13, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes 1, 2, 3, 6 and 10.
Resumo:
Synthesis, testing and characterisation of bimetallic gold, Au-M on ceria as catalysts were carried out for low temperature water-gas shift reaction (WGS). Amongst the entire screened catalysts 3 wt% (AU-Pt)/CeO2 displayed the best WGS activity than the monometallic promotors, giving the light-off curve at the lowest temperature in the range 100-300 degrees C. (Au-Pd)/CeO2 also achieved the same activity but at a higher temperature. It was also found that WGS activity was strongly correlated with the surface reducibility which in turn depended on the modified local electronic band structure of promoted ceria. These results clearly suggest that the key role of bimetallic promoter may involve in facilitating the creation of defective reduced surface by exerting its local electronic effect on ceria to form the surface germinal -OH groups in water which act as active sites for enhanced WGS activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of alanine on Cu {110} was studied by a combination of near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Large chemical shifts in the C 1s, N 1s, and O 1s XP spectra were found between the alanine multilayer and the chemisorbed and pseudo-(3 x 2) alaninate layers. From C, N, and O K-shell NEXAFS spectra the tilt angles of the carboxylate group (approximate to 26 degrees in plane with respect to [1 (1) over bar0] and approximate to 45 degrees out of plane) and the C-N bond angle with respect to [1 (1) over bar0] could be determined for the pseudo-(3 x 2) overlayer. Using this information three adsorption geometries could be eliminated from five p(3 x 2) structures which lead to almost identical heats of adsorption in the DFT calculations between 1.40 and 1.47 eV/molecule. Due to the small energy difference between the remaining two structures it is not unlikely that these coexist on the surface at room temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
One-electron oxidation of 3,6-diphenyl-1,2-dithiin yields the corresponding radical cation. The product is stable at low temperatures and can be distinguished by a triplet EPR signal. Cyclic voltammetric, UV-vis spectroelectrochemical, and DFT studies were performed to elucidate its molecular structure and electronic properties. Time-dependent DFT calculations reproduce appreciably well the UV-vis spectral changes observed during the oxidation. The results reveal a moderately twisted structure of the 1,2-dithiin heterocycle in the radical cation.
Resumo:
Empirical orthogonal functions (EOFs) are widely used in climate research to identify dominant patterns of variability and to reduce the dimensionality of climate data. EOFs, however, can be difficult to interpret. Rotated empirical orthogonal functions (REOFs) have been proposed as more physical entities with simpler patterns than EOFs. This study presents a new approach for finding climate patterns with simple structures that overcomes the problems encountered with rotation. The method achieves simplicity of the patterns by using the main properties of EOFs and REOFs simultaneously. Orthogonal patterns that maximise variance subject to a constraint that induces a form of simplicity are found. The simplified empirical orthogonal function (SEOF) patterns, being more 'local'. are constrained to have zero loadings outside the main centre of action. The method is applied to winter Northern Hemisphere (NH) monthly mean sea level pressure (SLP) reanalyses over the period 1948-2000. The 'simplified' leading patterns of variability are identified and compared to the leading patterns obtained from EOFs and REOFs. Copyright (C) 2005 Royal Meteorological Society.
Resumo:
The structures of trimethylchlorogermane ((CH3)(3)GeCl) and trimethylbromogermane ((CH3)(3)GeBr) have been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing second-order Moller-Plesset (MP2) level of theory and the 6-311+G(d) basis set. All the electrons were included in the correlation calculation. The results from the ab initio calculations indicated that these molecules have C-3v symmetry, and models with this symmetry were used in the electron diffraction analysis. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylchlorogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.950(4) Angstrom, r(Ge-Cl) = 2.173(4) Angstrom, r(C-H) = 1.090(9) Angstrom, angleCGeC = 112.7(7)degrees, angleCGeCl = 106.0(8)degrees, angleGeCH = 107.8(12)degrees. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylbromogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.952(7) Angstrom, r(Ge-Br) = 2.325(4) Angstrom, r(C-H) = 1. 140(28) Angstrom, angleCGeC = 114.2(11)degrees, angleCGeBr = 104.2(13)degrees, angleGeCH 106.9(43)degrees. Local C-3v symmetry and staggered conformation were assumed for the methyl groups.
Resumo:
The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species < wing-dimorphic male species < winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species.
Resumo:
The behaviour of the lattice parameters of HTCuCN (high-temperature form), AgCN and AuCN have been investigated as a function of temperature over the temperature range 90–490 K. All materials show one-dimensional negative thermal expansion (NTE) along the ––(M––CN)–– chain direction c (ac(HT-CuCN) ¼32.1 10–6 K1, ac(AgCN)¼23.910–6 K1 and ac(AuCN) ¼9.3106 K1 over the temperature range 90–490 K). The origin of this behaviour has been studied using RMC modelling of Bragg and total neutron diffraction data from AgCN and AuCN at 10 and 300 K. These analyses yield details of the local motions within the chains responsible for NTE. The low-temperature form of CuCN, LT-CuCN, has been studied using single-crystal X-ray diffraction. In this form of CuCN, wavelike distortions of the ––(Cu––CN)–– chains occur in the static structure, which are reminiscent of the motions seen in the RMC modelling of AgCN and AuCN, which are responsible for the NTE behaviour.
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.