14 resultados para Lobomycosis-like disease
em CentAUR: Central Archive University of Reading - UK
Resumo:
Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.
Resumo:
Tetracapsuloides bryosalmonae is the myxozoan parasite causing proliferative kidney disease (PKD) of salmonid fishes in Europe and North America. The complete life cycle of the parasite remains unknown despite recent discoveries that the stages infectious for fish develop in freshwater bryozoans. During the course of examinations of the urine of rainbow trout (Oncorhynchus mykiss) with or recovering from PKD we identified spores with features similar to those of T. bryosalmonae found in the bryozoan host. Spores found in the urine were subspherical, with a width of 16 mum and height of 14 mum, and possessed two soft valves surrounding two spherical polar capsules (2 mum in diameter) and a single sporoplasm. The absence of hardened valves is a distinguishing characteristic of the newly established class Malacosporea that includes T. bryosalmonae as found in the bryozoan host. The parasite in the urine of rainbow trout possessed only two polar capsules and two valve cells compared to the four polar capsules and four valves observed in the spherical spores of 19 mum in diameter from T. bryosalmonae from the bryozoan host. Despite morphological differences, a relationship between the spores in the urine of rainbow trout and T. bryosalmonae was demonstrated by binding of monoclonal and polyclonal antibodies and DNA probes specific to T. bryosalmonae.
Resumo:
Four terminally blocked tripeptides containing delta-aminovaleric acid residue self-assemble to form supramolecular beta-sheet structures as are revealed from their FT-IR data. Single crystal X-ray diffraction studies of two representative peptides also show that they form parallel beta-sheet structures. Self-aggregation of these beta-sheet forming peptides leads to the formation of fibrillar structures, as is evident from scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images. These peptide fibrils bind to a physiological dye, Congo red and exhibit a typical green-gold birefringence under polarized light, showing close resemblance to neurodegenerative disease causing amyloid fibrils. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
FT-IR data of six terminally blocked tripeptides containing Acp (epsilon-aminocaproic acid) reveals that all of them form supramolecular beta-sheets in the solid state. Single crystal X-ray diffraction studies of two peptides not only support this data but also disclose the fact that the supramolecular beta-sheet formation is initiated via dimer formation. The Scanning Electron Microscopic images of all peptides exhibit amyloid-like fibrils that show green birefringence after binding with Congo red, which is a characteristic feature of many neurodegenerative disease causing amyloid fibrils. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have described here the self-assembling properties of the synthetic tripeptides Boc-Ala(1)-Aib(2) -Val (3)-OMe 1, BocAla(l)-Aib(2)-Ile(3)-OMe 2 and Boc-Ala(l)-Gly(2)-Val(3)-OMe 3 (Aib=alpha-arnino isobutyric acid, beta-Ala=beta-alanine) which have distorted beta-turn conformations in their respective crystals. These turn-forming tripeptides self-assemble to form supramolecular beta-sheet structures through intermolecular hydrogen bonding and other noncovalent interactions. The scanning electron micrographs of these peptides revealed that these compounds form amyloid-like fibrils, the causative factor for many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Prion-related encephalopathies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)
Resumo:
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease.
Resumo:
Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli 086:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli 086:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type I and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR.RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.
Resumo:
Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise performance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
Resumo:
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized in the brain by the formation of amyloid-beta (Aβ)-containing plaques and neurofibrillary tangles containing the microtubule-associated protein tau. Neuroinflammation is another feature of AD and astrocytes are receiving increasing attention as key contributors. Although some progress has been made, the molecular mechanisms underlying the pathophysiology of AD remain unclear. Interestingly, some of the main proteins involved in AD, including amyloid precursor protein (APP) and tau, have recently been shown to be SUMOylated. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to regulate APP and tau and may modulate other proteins implicated in AD. Here we present an overview of recent studies suggesting that protein SUMOylation might be involved in the underlying pathogenic mechanisms of AD and discuss how this could be exploited for therapeutic intervention.