37 resultados para Load,Load models
em CentAUR: Central Archive University of Reading - UK
Resumo:
Critical loads are the basis for policies controlling emissions of acidic substances in Europe. The implementation of these policies involves large expenditures, and it is reasonable for policymakers to ask what degree of certainty can be attached to the underlying critical load and exceedance estimates. This paper is a literature review of studies which attempt to estimate the uncertainty attached to critical loads. Critical load models and uncertainty analysis are briefly outlined. Most studies have used Monte Carlo analysis of some form to investigate the propagation of uncertainties in the definition of the input parameters through to uncertainties in critical loads. Though the input parameters are often poorly known, the critical load uncertainties are typically surprisingly small because of a "compensation of errors" mechanism. These results depend on the quality of the uncertainty estimates of the input parameters, and a "pedigree" classification for these is proposed. Sensitivity analysis shows that some input parameters are more important in influencing critical load uncertainty than others, but there have not been enough studies to form a general picture. Methods used for dealing with spatial variation are briefly discussed. Application of alternative models to the same site or modifications of existing models can lead to widely differing critical loads, indicating that research into the underlying science needs to continue.
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
Abstract We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.
Resumo:
The study reported presents the findings relating to commercial growing of genetically-modified Bt cotton in South Africa by a large sample of smallholder farmers over three seasons (1998/99, 1999/2000, 2000/01) following adoption. The analysis presents constructs and compares groupwise differences for key variables in Bt v. non-Bt technology and uses regressions to further analyse the production and profit impacts of Bt adoption. Analysis of the distribution of benefits between farmers due to the technology is also presented. In parallel with these socio-economic measures, the toxic loads being presented to the environment following the introduction of Bt cotton are monitored in terms of insecticide active ingredient (ai) and the Biocide Index. The latter adjusts ai to allow for differing persistence and toxicity of insecticides. Results show substantial and significant financial benefits to smallholder cotton growers of adopting Bt cotton over three seasons in terms of increased yields, lower insecticide spray costs and higher gross margins. This includes one particularly wet, poor growing season. In addition, those with the smaller holdings appeared to benefit proportionately more from the technology (in terms of higher gross margins) than those with larger holdings. Analysis using the Gini-coefficient suggests that the Bt technology has helped to reduce inequality amongst smallholder cotton growers in Makhathini compared to what may have been the position if they had grown conventional cotton. However, while Bt growers applied lower amounts of insecticide and had lower Biocide Indices (per ha) than growers of non-Bt cotton, some of this advantage was due to a reduction in non-bollworm insecticide. Indeed, the Biocide Index for all farmers in the population actually increased with the introduction of Bt cotton. The results indicate the complexity of such studies on the socio-economic and environmental impacts of GM varieties in the developing world.
Resumo:
1. We compared the baseline phosphorus (P) concentrations inferred by diatom-P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2-200 mu g TP L-1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 mu g TP L-1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 mu g TP L-1 in only 4). 3. The difference between baseline and present-day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long-term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre-enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in-lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over-estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.
Resumo:
The aim of this work is to study the hydrochemical variations during flood events in the Rio Tinto, SW Spain. Three separate rainfall/flood events were monitored in October 2004 following the dry season. In general, concentrations markedly increased following the first event (Fe from 99 to 1130 mg/L; Q(max) = 0.78 m(3)/s) while dissolved loads peaked in the second event (Fe = 7.5 kg/s, Cu = 0.83 kg/s, Zn = 0.82 kg/s; Q(max) = 77 m(3)/s) and discharge in the third event (Q(max) = 127 m(3)/s). This pattern reflects a progressive depletion of metals and sulphate stored in the dry summer as soluble evaporitic salt minerals and concentrated pore fluids, with dilution by freshwater becoming increasingly dominant as the month progressed. Variations in relative concentrations were attributed to oxyhydroxysulphate Fe precipitation, to relative changes in the sources of acid mine drainage (e.g. salt minerals, mine tunnels, spoil heaps etc.) and to differences in the rainfall distributions along the catchment. The contaminant load carried by the river during October 2004 was enormous, totalling some 770 t of Fe, 420 t of Al, 100 t of Cu, 100 t of Zn and 71 t of Mn. This represents the largest recorded example of this flush-out process in an acid mine drainage setting. Approximately 1000 times more water and 1408 200 times more dissolved elements were carried by the river during October 2004 than during the dry, low-flow conditions of September 2004, highlighting the key role of flood Events in the annual pollutant transport budget of semi-arid and and systems and the need to monitor these events in detail in order to accurately quantify pollutant transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Across Europe, elevated phosphorus (P) concentrations in lowland rivers have made them particularly susceptible to eutrophication. This is compounded in southern and central UK by increasing pressures on water resources, which may be further enhanced by the potential effects of climate change. The EU Water Framework Directive requires an integrated approach to water resources management at the catchment scale and highlights the need for modelling tools that can distinguish relative contributions from multiple nutrient sources and are consistent with the information content of the available data. Two such models are introduced and evaluated within a stochastic framework using daily flow and total phosphorus concentrations recorded in a clay catchment typical of many areas of the lowland UK. Both models disaggregate empirical annual load estimates, derived from land use data, as a function of surface/near surface runoff, generated using a simple conceptual rainfall-runoff model. Estimates of the daily load from agricultural land, together with those from baseflow and point sources, feed into an in-stream routing algorithm. The first model assumes constant concentrations in runoff via surface/near surface pathways and incorporates an additional P store in the river-bed sediments, depleted above a critical discharge, to explicitly simulate resuspension. The second model, which is simpler, simulates P concentrations as a function of surface/near surface runoff, thus emphasising the influence of non-point source loads during flow peaks and mixing of baseflow and point sources during low flows. The temporal consistency of parameter estimates and thus the suitability of each approach is assessed dynamically following a new approach based on Monte-Carlo analysis. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.
Resumo:
In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.