13 resultados para Liquid crystals
em CentAUR: Central Archive University of Reading - UK
Resumo:
Experiments were performed to investigate the evolution of structure and morphology of the network in polymer-stabilised liquid crystals. In situ optical microscopy revealed that the morphology was significantly altered by extraction of the LC host, while scanning electron microscopy showed that the network morphology was also dependent on the polymerisation conditions and closely related to the depletion of monomer, as monitored by high performance liquid chromatography. Transmission electron microscopy allowed observation of internal structure, resolving microstructure on the order of 0. 1 μm.
Resumo:
Polymer-stabilised liquid crystals are systems in which a small amount of monomer is dissolved within a liquid crystalline host, and then polymerised in situ to produce a network. The progress of the polymerisation, performed within electro-optic cells, was studied by establishing an analytical method novel to these systems. Samples were prepared by photopolymerisation of the monomer under well-defined reaction conditions; subsequent immersion in acetone caused the host and any unreacted monomer to dissolve. High performance liquid chromatography was used to separate and detect the various solutes in the resulting solutions, enabling the amount of unreacted monomer for a given set of conditions to be quantified. Longer irradiations cause a decrease in the proportion of unreacted monomer since more network is formed, while a more uniform LC director alignment (achieved by decreasing the sample thickness) or a higher level of order (achieved by decreasing the polymerisation temperature) promotes faster reactions.
Resumo:
The effect of irradiation (UV-visible light) on a nematic liquid crystal doped with a photoactive azobenzene derivative was investigated. The selective irradiation results in either an E implies Z or Z implies E isomerization of the azobenzene unit. The effect of the isomerization is to cause a reversible depression of the liquid crystal to isotropic (LC implies l) phase transition temperature of the doped mixture, which can be monitored optically as an isothermal phase transition. This depression also results in a biphasic liquid crystal+isotropic region which is discussed. The authors investigate the cause and magnitude of the phase depression as a function of the amount of doped 4-butyl-4'-methoxyazobenzene (photoactive unit) in 4-cyano-4'-n-pentylbiphenyl (liquid crystal unit), and as a function of the percentage conversion of E implies Z (caused by isomerization) in the azobenzene. The photostationary state of the doped mixtures achieved by Z implies E isomerization is considered and its effect upon the transition temperature of the mixture and response time of the system is discussed. They discuss the implications of the photostationary state with regards to the reversibility of the photo-induced phase transition and hence potential applications.
Resumo:
Side chain liquid crystal polymers and elastomers exhibit a rich phase behaviour which arises from the antagonistic influences of the entropically disordered polymer chain configuration and the long range orientational ordering of the mesogenic units. This competition arises since the natural macroscopic phase separation is inhibited by the inherent chemical connectivity of the system. At the heart of this connectivity is the spacer link and we consider here its influence on the phase behaviour. In particular we consider a series of elastomers in which the number of alkyl units in the spacer is systematically varied from 2 to 6. The lengthening of the coupling spacer is accompanied by an alternation of the sign of coupling between the polymer chain and the mesogenic unit. These results demonstrate the dominating influence of the so-called hinge effect in determining the phase behaviour. In addition to the alternation of the sign there is some decrease in the magnitude of the coupling with increasing spacer length.
WAXS studies of global molecular orientation induced in nematic liquid crystals by simple shear flow
Resumo:
Global molecular orientation function coefficients for the nematic liquid crystal 4-cyano 4'-nn -pentylbiphenyl (5CB) in shear flow are presented, being extracted from 2-dimensional Wide-Angle X-ray Scattering data. A linear increase in orientation parameter P2 is observed with a logarithmic increase in shear rate. It is proposed that this arises from an increased number of LC directors aligning to the shear axis. Upon cessation of shear flow, the anisotropy is seen to relax away completely, over a time scale which is inversely proportional to the previously applied shear rate.
Resumo:
We report on the capillary flow behaviour of thermotropic liquid crystal mixtures containing 4-n-octyl-4'-cyanobiphenyl (8CB) and 4-n-pentyl-4'-cyanobiphenyl (5CB). The liquid crystal mixtures are studied in the Nematic (N) and Smectic (SA) phases at room temperature. Polarised optical microscopy (POM), rheology and simultaneous X-ray diffraction (XRD)/capillary flow experiments are performed to characterise the system. Polarised optical microscopy reveals a dramatic change in optical texture when the 5CB content is increased from 20 to 30% in the mixtures. X-ray diffraction results show that the system goes through a SA-N phase transition, such that the mixtures are smectic for 10-20% 5CB and nematic for 30-90% 5CB. Smectic mixtures flow with the layers aligned along the flow direction (mesogens perpendicular to flow) while nematic mixtures flow with the mesogens aligned in the flow direction. Simultaneous XRD/shear flow experiments show that the SA-N transition is independent of the flow rate in the range 1-6 ml min-1. The correlation length of the liquid crystal order decreases with increasing 5CB content. Rheology is used to prove that the correlation length behaviour is related to a reduction in the viscosity of the mixture.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
A method has been established for observing the internal structure of the network component of polymer-stabilised liquid crystals. In situ photopolymerisation of a mesogenic diacrylate monomer using ultraviolet light leads to a sparse network (∼1 wt%) within a nematic host. Following polymerisation, the host was removed through dissolution in heptane, revealing the network. In order to observe a cross-section through the network, it was embedded in a resin and then sectioned using an ultramicrotome. However, imaging of the network was not possible due to poor contrast. To improve this, several reagents were used for network staining, but only one was successful: bromine. The use of a Melinex-resin composite for sectioning was also found to be advantageous. Imaging of the network using transmission electron microscopy revealed solid “droplets” of width 0.07–0.20 μm, possessing an open, yet homogeneous structure, with no evidence for any large-scale internal structures.
Resumo:
Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate (PVCN) and a cholesteric silicone polymer. Only blends that contained at least 40 % of PVCN produced fibres. Both differential scanning calorimetry and electron dispersion spectroscopy data indicate that the samples are miscible over a wide temperature interval. The variation of fibre diameter with concentration is nonlinear with a well-defined minimum corresponding to an 80 % PVCN blend. The fibres are birefringent with Kerr constants similar to that of cholesteric liquid crystals. Although not significant, the Kerr constant increases with increasing silicone polymer concentration.
Resumo:
We study the equilibrium morphology of droplets of symmetric AB diblock copolymer on a flat substrate. Using self-consistent field theory (SCFT), we provide the first predictions for the equilibrium droplet shape and its internal structure. When the sustrate affinity for the A component, $\eta_A$, is small, the droplet adopts a nearly spherical shape much like that of simple fluids. Inside the spherical droplet, however, concentric circular lamellar layers stack on top of each other; hence the thickness of the droplet is effectively quantized by a half-integer or integer number of layers. At larger $\eta_A$ and smaller contact angle, the area of the upper-most layer becomes relatively large, resulting in a nearly flat, faceted top surface, followed by a semi-spherical slope. This geometry is remarkably reminiscent of the droplet shapes observed with smetic liquid crystals.
Resumo:
A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.
Resumo:
The optical microstructures of thin sections of two liquid crystalline polymers are examined in the polarizing microscope. The polymers are random copolyesters based on hydroxybenzoic and hydroxynaphthoic acids (B-N), and hydroxybenzoic acid and ethylene terephthalate (B-ET). Sections cut from oriented samples, so as to include the extrusion direction, show microstructures in which there is no apparent preferred orientation of the axes describing the local optical anisotropy. The absence of preferred orientation in the microstructure, despite marked axial alignment of molecular chain segments as demonstrated by X-Ray diffraction, is interpreted in terms of the polymer having biaxial optical properties. The implication of optical biaxiality is that, although the mesophases are nematic, the orientation of the molecules is correlated about three (orthogonal) axes over distances greater than a micron. The structure is classified as a multiaxial nematic.
Resumo:
Matrix-assisted laser desorption/ionisation (MALDI) coupled with time-of-flight (TOF) mass spectrometry (MS) is a powerful tool for the analysis of biological samples, and nanoflow high-performance liquid chromatography (nanoHPLC) is a useful separation technique for the analysis of complex proteomics samples. The off-line combination of MALDI and nanoHPLC has been extensively investigated and straightforward techniques have been developed, focussing particularly on automated MALDI sample preparation that yields sensitive and reproducible spectra. Normally conventional solid MALDI matrices such as α-cyano-4-hydroxycinnamic acid (CHCA) are used for sample preparation. However, they have limited usefulness in quantitative measurements and automated data acquisition because of the formation of heterogeneous crystals, resulting in highly variable ion yields and desorption/ ionization characteristics. Glycerol-based liquid support matrices (LSM) have been proposed as an alternative to the traditional solid matrices as they provide increased shot-to-shot reproducibility, leading to prolonged and stable ion signals and therefore better results. This chapter focuses on the integration of the liquid LSM MALDI matrices into the LC-MALDI MS/MS approach in identifying complex and large proteomes. The interface between LC and MALDI consists of a robotic spotter, which fractionates the eluent from the LC column into nanoliter volumes, and co-spots simultaneously the liquid matrix with the eluent fractions onto a MALDI target plate via sheath flow. The efficiency of this method is demonstrated through the analysis of trypsin digests of both bovine serum albumin (BSA) and Lactobacillus plantarum WCFS1 proteins.