106 resultados para Lipoproteins - metabolism
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: Postprandial lipid metabolism in humans has deserved much attention during the last two decades. Although fasting lipid and lipoprotein parameters reflect body homeostasis to some extent, the transient lipid and lipoprotein accumulation that occurs in the circulation after a fat-containing meal highlights the individual capacity to handle an acute fat input. An exacerbated postprandial accumulation of triglyceride-rich lipoproteins in the circulation has been associated with an increased cardiovascular risk. Methods: The important number of studies published in this field raises the question of the methodology used for such postprandial studies, as reviewed. Results: Based on our experiences, the present review reports and discuss the numerous methodological issues involved to serve as a basis for further works. These aspects include aims of the postprandial tests, size and nutrient composition of the test meals and background diets, pre-test conditions, characteristics of subjects involved, timing of sampling, suitable markers of postprandial lipid metabolism and calculations. Conclusion: In conclusion, we stress the need for standardization of postprandial tests.
Resumo:
Background: Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. Objective: We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Design: Ten normolipidemic men received in random order a mixed meal containing 50 L, of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)]. or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48. B-100, E. C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S-f) >400 S-f 60-400, and S-f 20 - 60. Results: Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S-f > 400 and S-f 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (Sf 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (Sf > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Conclusions: Differences in the composition of S-f > 400 and S-f 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.
Resumo:
The extent and duration of postprandial lipaemia have been linked to risk of CHD but the influence of dietary variables on, and the relative contributions of, exogenous (chylomicron) and endogenous (VLDL) triacylglycerols to the total lipaemic response have not been comprehensively evaluated. In the present study the triacylglycerol, apolipoprotein (apo) B-48 and retinyl ester (RE) responses to three test meals of varying monounsaturated (MUFA) and saturated fatty acid (SFA) content were measured in the triacylglycerol-rich lipoprotein (TRL) fraction of plasma (r ¼ 1·006 g/ml) for 9 h after meal consumption. Fifteen healthy normolipidaemic young men consumed, on separate occasions, three test meals which were identical apart from their MUFA and SFA contents. Expressed as a percentage of total energy the MUFA/SFA contents of the meals were: (1) 12 %/17 %; (2) 17 %/12% and (3) 24 %/5 %. The contribution of the intestinally-derived lipoproteins (chylomicrons) to the lipaemic response was investigated by determining the time to reach peak concentration and the total and incremental areas under the time response curves (AUC and incremental AUC) for RE, apoB-48 and triacylglycerol in the TRL fraction. No significant differences in these measurements were observed for the three meals. However, visual comparison of the postprandial responses to the three meals suggested that as meal MUFA content increased there was a tendency for the triacylglycerol, apoB-48 and RE responses to become biphasic as opposed to the typical monophasic response seen with the 12% MUFA/17% SFA meal. Comparison of the apoB-48 and RE responses for the three test meals confirmed other workers’ findings of delayed entry of RE relative to apoB-48 in TRL. The value of the two markers in investigating dietary fat absorption and metabolism is discussed.
Resumo:
BACKGROUND AND AIM: The atherogenic potential of dietary derived lipids, chylomicrons (CM) and their remnants (CMr) is now becoming more widely recognised. To investigate factors effecting levels of CM and CMr and their importance in coronary heart disease risk it is essential to use a specific method of quantification. Two studies were carried out to investigate: (i) effects of increased daily intake of long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA), and (ii) effects of increasing meal monounsaturated fatty acid (MUFA) content on the postprandial response of intestinally-derived lipoproteins. The contribution of the intestinally-derived lipoproteins to total lipaemia was assessed by triacylglycerol-rich lipoprotein (TRL) apolipoprotein B-48 (apo B-48) and retinyl ester (RE) concentrations. METHODS AND RESULTS: In a randomised controlled crossover trial (placebo vs LC n-3 PUFA) a mean daily intake of 1.4 g/day of LC n-3 PUFA failed to reduce fasting and postprandial triacylglycerol (TAG) response in 9 healthy male volunteers. Although the pattern and nature of the apo B-48 response was consistent with the TAG response following the two diets, the postprandial RE response differed on the LC n-3 PUFA diet with a lower early RE response and a delayed and more marked increase in RE in the late postprandial period compared with the control diet, but the differences did not reach levels of statistical significance. In the meal study there was no effect of MUFA/SFA content on the total lipaemic response to the meals nor on the contribution of intestinally derived lipoproteins evaluated as TAG, apo B-48 and RE responses in the TRL fraction. In both studies, the RE and apo B-48 measurements provided broadly similar information with respect to lack of effects of dietary or meal fatty acid composition and the presence of single or multiple peak responses. However the apo B-48 and RE measurements differed with respect to the timing of their peak response times, with a delayed RE peak, relalive to apo B-48, of approximately 2-3 hours for the LC n-3 PUFA diet (p = 0.002) study and 1-1.5 hours for the meal MUFA/SFA study. CONCLUSIONS: It was concluded that there are limitations of using RE as a specific CM marker, apo B-48 quantitation was found to be a more appropriate method for CM and CMr quantitation. However it was still considered of value to measure RE as it provided additional information regarding the incorporation of other constituents into the CM particle.
Resumo:
Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.
Resumo:
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Resumo:
Differences in whole-body lipid metabolism between men and women are indicated by lower-body fat accumulation in women but more marked accumulation of fat in the intra-abdominal visceral fat depots of men. Circulating blood lipid concentrations also show gender-related differences. These differences are most marked in premenopausal women, in whom total cholesterol, LDL-cholesterol and triacylglycerol concentrations are lower and HDL-cholesterol concentration is higher than in men. Tendency to accumulate body fat in intra-abdominal fat stores is linked to increased risk of CVD, metabolic syndrome, diabetes and other insulin-resistant states. Differential regional regulation of adipose tissue lipolysis and lipogenesis must underlie gender-related differences in the tendency to accumulate fat in specific fat depots. However, empirical data to support current hypotheses remain limited at the present time because of the demanding and specialist nature of the methods used to study adipose tissue metabolism in human subjects. In vitro and in vivo data show greater lipolytic sensitivity of abdominal subcutaneous fat and lesser lipolytic sensitivity of femoral and gluteal subcutaneous fat in women than in men. These differences appear to be due to fewer inhibitory alpha adrenergic receptors in abdominal regions and greater a adrenergic receptors in gluteal and femoral regions in women than in men. There do not appear to be major gender-related differences in rates of fatty acid uptake (lipogenesis) in different subcutaneous adipose tissue regions. In visceral fat rates of both lipolysis and lipogenesis appear to be greater in men than in women; higher rates of lipolysis may be due to fewer alpha adrenergic receptors in this fat depot in men. Fatty acid uptake into this depot in the postprandial period is approximately 7-fold higher in men than in women. Triacylglycerol concentrations appear to be a stronger cardiovascular risk factor in women than in men, with particular implications for cardiovascular risk in diabetic women. The increased triacylglycerol concentrations observed in women taking hormone-replacement therapy (HRT) may explain the paradoxical findings of increased rates of CVD in women taking HRT that have been reported from recent primary and secondary prevention trials of HRT.
Resumo:
There is currently considerable interest in potential atherogenic and thrombogenic consequences of elevated concentrations of triacylglycerols, especially in the post-prandial state. Despite this, there is limited information on the effects of dietary fatty acids on the synthesis, secretion and metabolism of chylomicrons, the large triacylglycerol-rich lipoproteins synthesized in the enterocyte following the digestion and absorption of dietary fat. This brief review considers current approaches to the investigation of chylomicron synthesis and summarizes some of the human, cell and animal studies that have investigated effects of different fatty acids on these pathways. Potential sites for modulatory effects of dietary fatty acids on the molecular events of chylomicron synthesis are proposed in the light of the recent model that has been developed from cell and animal studies and observations based on abnormalities in chylomicron formation in human inherited autosomal recessive diseases.
Resumo:
BACKGROUND: Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into methylated, sulphated and glucuronidated counterparts, which inhibit platelet function. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 4'-O-methyl quercetin (tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl transferase (COMT) within platelets. CONCLUSIONS/SIGNIFICANCE: Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the regulation of the function of these cells by metabolites of these dietary compounds.
Resumo:
We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats.Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0±10.4%) andheart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influencedbymicrobial activitiesormodulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.
Resumo:
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.
Resumo:
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six cathetenzed Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW0.15.d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.
Resumo:
Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75.)d]) every 2 h without (27.0 g of N/kg of DM) and. with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion Of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic 02 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal Of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.
Resumo:
A commercial blend of essential oil (EO) compounds was added to a grass, maize silage, and concentrate diet fed to dairy cattle in order to determine their influence on protein metabolism by ruminal microorganisms. EO inhibited (P < 0.05) the rate of deamination of amino acids. Pure-culture studies indicated that the species most sensitive to EO were ammonia-hyperproducing bacteria and anaerobic fungi.