87 resultados para Lipid-lowering
em CentAUR: Central Archive University of Reading - UK
Resumo:
The objective of this article is to review existing studies concerning the effects of probiotics and prebiotics on serum cholesterol concentrations, with particular attention on the possible mechanisms of their action. Although not without exception, results from animal and human studies suggest a moderate cholesterol-lowering action of dairy products fermented with appropriate strain(s) of lactic acid bacteria and bifidobacteria. Mechanistically, probiotic bacteria ferment food-derived indigestible carbohydrates to produce short-chain fatty acids in the gut, which can then cause a decrease in the systemic levels of blood lipids by inhibiting hepatic cholesterol synthesis and/or redistributing cholesterol from plasma to the liver. Furthermore, some bacteria may interfere with cholesterol absorption from the gut by deconjugating bile salts and therefore affecting the metabolism of cholesterol, or by directly assimilating cholesterol. For prebiotic substances, the majority of studies have been done with the fructooligosaccharides inulin and oligofructose, and although convincing lipid-lowering effects have been observed in animals, high dose levels had to be used. Reports in humans are few in number. In studies conducted in normal-lipidemic subjects, two reported no effect of inulin or oligofructose on serum lipids, whereas two others reported a significant reduction in serum triglycerides (19 and 27%, respectively) with more modest changes in serum total and LDL cholesterol. At present, data suggest that in hyperlipidemic subjects, any effects that do occur result primarily in reductions in cholesterol, whereas in normal lipidemic subjects, effects on serum triglycerides are the dominant feature.
Resumo:
Although convincing lipid-lowering effects of the fructo-oligosaccharide, inulin, have been demonstrated in animals, attempts to reproduce similar effects in man have produced conflicting findings. This may be because of the much lower doses which can be used due to the adverse gastrointestinal symptoms exhibited by most subjects consuming in excess of 15 g/d. There are nine studies reported in the literature which have investigated the response of blood lipids (usually total and LDL-cholesterol and triacylglycerol) to inulin or oligofructose supplementation in human volunteers. Three have observed no effects of inulin or oligofructose on blood levels of cholesterol or triacylglycerol, three have shown significant reductions in triacylglycerol, whilst four have shown modest reductions in total and LDL-cholesterol. Studies have been conducted in both normo- and moderately hyperlipidaemic subjects. Differences in study outcomes do not appear to be due to differences in the type or dose of oligosaccharides used nor the duration of the studies. Because animal studies have identified inhibition of hepatic fatty acid synthesis as the major site of action for the triacylglycerol lowering effects of inulin and oligofructose, and because this pathway is relatively inactive in man unless a high carbohydrate diet is fed, variability in response may be a reflection of differences in background diet or the experimental foods used.
Resumo:
Prebiotics are defined as nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth or the activity of one or a limited number of bacteria (bifidobacteria, lactobacilli) in the colon. Dietary fructans are nutritionally interesting oligosaccharides that strictly conform to the definition of prebiotics and (in view of experimental studies in animals and of less numerous studies in humans) exhibit interesting serum or hepatic lipid lowering properties. Other nondigestible/fermentable nutrients, which also modulate intestinal flora activity, exhibit cholesterol or triglyceride lowering effects. Are changes in intestinal bacterial flora composition or fermentation activity responsible for those effects? What is the future of prebiotics in the nutritional control of lipidaemia and cardiovascular disease risk in humans? Those questions only receive partial response in the present review because studies of the systemic effects of prebiotics are still in their infancy, and require fundamental research devoted to elucidating the biochemical and physiological events that allow prebiotics to exert systemic effects on lipid metabolism.
Resumo:
Convincing lipid-lowering effects of the fructooligosaccharide inulin have been demonstrated in animals, yet attempts to reproduce similar effects in humans have generated conflicting results. This may be because of the much lower doses used in humans as a result of the adverse gastrointestinal symptoms exhibited by most subjects consuming daily doses in excess of 30 g. Two studies that fed either oligofructose (20 g/d) or inulin (14 g/d) observed no effect on fasting total, LDL or HDL cholesterol, or serum triglycerides. Two other studies that fed inulin either in a breakfast cereal (9 g/d) or as a powdered addition to beverages and meals (10 g/d) reported similar reductions in fasting triglycerides (227 and 219%, respectively). In one of these studies, total and LDL cholesterol concentrations were also modestly reduced (5 and 7%, respectively). Because animal studies have identified inhibition of hepatic fatty acid synthesis as the major site of action for the triglyceride-lowering effects of inulin, and because this pathway is relatively inactive in humans unless a high carbohydrate diet is fed, future attempts to demonstrate lipid-lowering effects of inulin should consider the nature of the background diet as a determinant of response.
Resumo:
It has been repeatedly demonstrated that ACTH administration lowers plasma lipid concentrations in man. The present study was designed to test the hypothesis, based on observations of decreased apolipoprotein B (ApoB) synthesis and secretion in vitro, that ACTH administration inhibits the postprandial output of ApoB in man. Therefore, we studied the response to a fat-rich meal supplemented with Vitamin A in eight healthy volunteers, who underwent this test without premedication, after 4 days administration of ACTH, and after 4 days administration of a glucocorticoid (betamethasone). As expected, fasting plasma levels of low-density lipoproteins (LDL)-cholesterot (-25%) and ApoB (-17%) decreased after ACTH, but not after betamethasone administration. Also, the elevation of plasma ApoB-48 in response to fat intake (to twice the basal levels) was markedly reduced after ACTH administration. However, the postprandial rise in plasma triglycerides and retinyl palmitate was unimpaired, suggesting that ACTH administration induced the secretion of fewer but larger chylomicrons. The effect of betamethasone on the postprandial response was similar but less pronounced. This study confirms earlier reports on the lipid-lowering effects of ACTH and supports our theory, based on in vitro studies, that the lipid-lowering effects of ACTH administration in man involves an inhibition of ApoB production. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Scope: Our aim was to determine the effects of chronic dietary fat manipulation on postprandial lipaemia according to apolipoprotein (APO)E genotype. Methods and results:Men (mean age 53 (SD 9) years), prospectively recruited for the APOE genotype (n = 12 E3/E3, n = 11 E3/E4), were assigned to a low fat (LF), high fat, high-saturated fat (HSF), and HSF diet with 3.45 g/day docosahexaenoic acid (HSF-DHA), each for an 8-week period in the same order. At the end of each dietary period, a postprandial assessment was performed using a test meal with a macronutrient profile representative of that dietary intervention. A variable postprandial plasma triacylglycerol (TAG) response according to APOE genotype was evident, with a greater sensitivity to the TAG-lowering effects of DHA in APOE4 carriers (p ≤ 0.005). There was a lack of an independent genotype effect on any of the lipid measures. In the groups combined, dietary fat manipulation had a significant impact on lipids in plasma and Svedberg flotation rate (Sf) 60–400 TAG-rich lipoprotein fraction, with lower responses following the HSF-DHA than HSF intervention (p < 0.05). Conclusion: Although a modest impact of APOE genotype was observed on the plasma TAG profile, dietary fat manipulation emerged as a greater modulator of the postprandial lipid response in normolipidaemic men.
Resumo:
Public health strategies for reducing the risk of coronary heart disease have focused on lowering plasma lipids, particularly cholesterol levels, with recent studies also highlighting triacylglycerol (TAG) as an important modifiable risk factor. One approach is to supplement the diet with probiotics, prebiotics or synbiotics. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Putative health benefits include improved resistance to gastrointestinal infections, reduction in lipid levels and stimulation of the immune system. Prebiotics are selectively fermented dietary components that are aimed at improving host health through selective fermentation by the gut microbiota, such as bifidobacteria and lactobacilli. Animal studies have shown prebiotics to markedly reduce circulating TAG and to a lesser extent cholesterol concentrations, with favourable but inconsistent findings with respect to changes in lipid levels in human studies. Here we provide an overview of the effects, and possible mechanisms, of probiotics, prebiotics and synbiotics (combination of a probiotic and prebiotic) on circulating lipeamia in humans.
Resumo:
Differences in whole-body lipid metabolism between men and women are indicated by lower-body fat accumulation in women but more marked accumulation of fat in the intra-abdominal visceral fat depots of men. Circulating blood lipid concentrations also show gender-related differences. These differences are most marked in premenopausal women, in whom total cholesterol, LDL-cholesterol and triacylglycerol concentrations are lower and HDL-cholesterol concentration is higher than in men. Tendency to accumulate body fat in intra-abdominal fat stores is linked to increased risk of CVD, metabolic syndrome, diabetes and other insulin-resistant states. Differential regional regulation of adipose tissue lipolysis and lipogenesis must underlie gender-related differences in the tendency to accumulate fat in specific fat depots. However, empirical data to support current hypotheses remain limited at the present time because of the demanding and specialist nature of the methods used to study adipose tissue metabolism in human subjects. In vitro and in vivo data show greater lipolytic sensitivity of abdominal subcutaneous fat and lesser lipolytic sensitivity of femoral and gluteal subcutaneous fat in women than in men. These differences appear to be due to fewer inhibitory alpha adrenergic receptors in abdominal regions and greater a adrenergic receptors in gluteal and femoral regions in women than in men. There do not appear to be major gender-related differences in rates of fatty acid uptake (lipogenesis) in different subcutaneous adipose tissue regions. In visceral fat rates of both lipolysis and lipogenesis appear to be greater in men than in women; higher rates of lipolysis may be due to fewer alpha adrenergic receptors in this fat depot in men. Fatty acid uptake into this depot in the postprandial period is approximately 7-fold higher in men than in women. Triacylglycerol concentrations appear to be a stronger cardiovascular risk factor in women than in men, with particular implications for cardiovascular risk in diabetic women. The increased triacylglycerol concentrations observed in women taking hormone-replacement therapy (HRT) may explain the paradoxical findings of increased rates of CVD in women taking HRT that have been reported from recent primary and secondary prevention trials of HRT.
Resumo:
Purpose of review Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Recent findings In-vitro and ex-vivo studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may exert immunosuppressive and anticancer effects through changes in lipid raft organization. In addition, gangliosides and cholesterol may modulate lipid raft organization in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth. The roles of fatty acids and gangliosides, especially in relation to lipid rafts, in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer’s disease are poorly understood and require further investigation. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are starting to emerge, and indicate compelling evidence for the growing importance of membrane microdomains in health and disease. Summary In-vitro and animal studies show that n-3 PUFAs, cholesterol, and gangliosides modulate the structure and composition of lipid rafts, potentially influencing a wide range of biological processes, including immune function, neuronal signaling, cancer cell growth, entry of pathogens through the gut barrier, and insulin resistance in metabolic disorders. The physiological, clinical, and nutritional relevance of these observations remains to be determined.
Resumo:
The interactions have been investigated of puroindoline-a (Pin-a) and mixed protein systems of Pin-a and wild-type puroindoline-b (Pin-b+) or puroindoline-b mutants (G46S mutation (Pin bH) or W44R mutation (Pin-bS)) with condensed phase monolayers of an anionic phospholipid (L-α-dipalmitoylphosphatidyl-dl-glycerol (DPPG)) at the air/water interface. The interactions of the mixed systems were studied at three different concentration ratios of Pin-a:Pin-b, namely 3:1, 1:1 and 1:3 in order to establish any synergism in relation to lipid binding properties. Surface pressure measurements revealed that Pin-a interaction with DPPG monolayers led to an equilibrium surface pressure increase of 8.7 ± 0.6 mN m-1. This was less than was measured for Pin-a:Pin-b+ (9.6 to 13.4 mN m-1), but was significantly more than was measured for Pin-a:Pin-bH (4.0 to 6.2 mN m-1) or Pin-a:Pin-bS (3.8 to 6.3 mN m-1) over the complete range of concentration ratio. Consequently, surface pressure increases were shown to correlate to endosperm hardness phenotype, with puroindolines present in hard-textured wheat varieties yielding lower equilibrium surface pressure changes. Integrated amide I peak areas from corresponding external reflectance Fourier-transform infrared (ER-FTIR) spectra, used to indicate levels of protein adsorption to the lipid monolayers, showed that differences in adsorbed amount were less significant. The data therefore suggest that Pin-b mutants having single residue substitutions within their tryptophan-rich loop that are expressed in some hard-textured wheat varieties influence the degree of penetration of Pin-a and Pin-b into anionic phospholipid films. These findings highlight the key role of the tryptophan-rich loop in puroindoline-lipid interactions.
Resumo:
External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m(-1), followed by Pin-bH (7.9 +/- 1.6 mN m(-1)) and Pin-bS (6.3 +/- 1.0 mN m(-1)), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m(-1)); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.
Resumo:
Background: The lipid-modulatory effects of high intakes of the fish-oil fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well established and likely to contribute to cardioprotective benefits. Objectives: We aimed to determine the effect of moderate EPA and DHA intakes (< 2 g EPA + DHA/d) on the plasma fatty acid profile, lipid and apolipoprotein concentrations, lipoprotein subclass distribution, and markers of oxidative status. We also aimed to examine the effect of age, sex, and apolipoprotein E (APOE) genotype on the observed responses. Design: Three hundred twelve adults aged 20-70 y, who were prospectively recruited according to age, sex, and APOE genotype, completed a double-blind placebo-controlled crossover study. Participants consumed control oil, 0.7 g EPA + DHA/d (0.7FO), and 1.8 g EPA + DHA/d (1.8FO) capsules in random order, each for an 8-wk intervention period, separated by 12-wk washout periods. Results: In the group as a whole, 8% and 11% lower plasma triacylglycerol concentrations were evident after 0.7FO and 1.8FO, respectively (P < 0.001): significant sex x treatment (P = 0.038) and sex x genotype x treatment (P = 0.032) interactions were observed, and the greatest triacylglycerol-lowering responses (reductions of 15% and 23% after 0.7FO and 1.8FO, respectively) were evident in APOE4 men. Furthermore, lower VLDL-cholesterol (P = 0.026) and higher LDL-cholesterol (P = 0.010), HDL-cholesterol (P < 0.001), and HDL2 (P < 0.001) concentrations were evident after fish-oil intervention. Conclusions: Supplements providing EPA + DHA at doses as low as 0.7 g/d have a significant effect on the plasma lipid profile. The results of the current trial, which used a prospective recruitment approach to examine the responses in population subgroups, are indicative of a greater triacylglycerol-lowering action of long-chain n-3 polyunsaturated fatty acids in males than in females.
Resumo:
LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Apolipoprotein L1 in plasma is associated with high- density lipoprotein. Novel APOL1 polymorphisms are investigated along with the association of two common haplotypes (Lys166Glu, Ile244Met, Lys271Arg) with circulating lipid and glucose levels. Although the amino acid substitutions occur in the amphipathic alpha helices region involved in lipid binding, these substitutions were found not to independently account for variability in circulating lipid and glucose levels in 149 middle age males.
Resumo:
In this work we study the colloidal osmotic pressure (COP) and aggregate shape in phosphate saline buffer solutions (PH 7.4) containing bovine serum albumin (BSA), poly(ethylene glycol) lipid (PEG(2000)-PE) and Dextran (Dx). Dx was added to the BSA/PEG(2000)-PE system in order to increase the COP of the solution to levels comparable to the COP of healthy adults, with the aim of using the solution as a blood COP regulator. Dynamic light scattering and small angle X-ray scattering results shown the formation of BSA/PEG(2000)-PE/Dx aggregates in the solution. Osmometry results shown that the addition of Dx to the BSA/PE2000-PE system could successfully increase the COP, through the formation of BSA/PEG(2000)-PE/Dx aggregates. The BSA/PEG(2000)-PE/Dx solutions attained COP= 15 mm Hg, representing 60% of COP measured for healthy adults. (c) 2008 Elsevier B.V. All rights reserved.