9 resultados para Linear moment functional
em CentAUR: Central Archive University of Reading - UK
Resumo:
1. We studied a reintroduced population of the formerly critically endangered Mauritius kestrel Falco punctatus Temmink from its inception in 1987 until 2002, by which time the population had attained carrying capacity for the study area. Post-1994 the population received minimal management other than the provision of nestboxes. 2. We analysed data collected on survival (1987-2002) using program MARK to explore the influence of density-dependent and independent processes on survival over the course of the population's development. 3.We found evidence for non-linear, threshold density dependence in juvenile survival rates. Juvenile survival was also strongly influenced by climate, with the temporal distribution of rainfall during the cyclone season being the most influential climatic variable. Adult survival remained constant throughout. 4. Our most parsimonious capture-mark-recapture statistical model, which was constrained by density and climate, explained 75.4% of the temporal variation exhibited in juvenile survival rates over the course of the population's development. 5. This study is an example of how data collected as part of a threatened species recovery programme can be used to explore the role and functional form of natural population regulatory processes. With the improvements in conservation management techniques and the resulting success stories, formerly threatened species offer unique opportunities to further our understanding of the fundamental principles of population ecology.
Resumo:
A range of linear polyurethanes featuring aliphatic, aromatic and ether residues have been prepared by co-polymerisation of novel 'masked' isocyanate A(2)-type monomers and diols. The reactive isocyanate monomers were generated in situ via the triphenylphosphine mediated decomposition of the heterocyclic disulfide, 1,2,4-dithiazolidine-3,5-dione. Two different synthetic approaches were examined and assessed for the construction of the novel A(2)-type monomers, which involved either coupling two 1,2,4-dithiazolidine-3,5-diones together through a spacer group or construction of 1,2,4-dithiazolidine-3,5-diones directly from diamines. The resulting polyurethanes were purified via solvent extraction and analysed using GPC, NMR and IR spectroscopic analyses. Molecular weight data were obtained and compared from both GPC and H-1 NMR (via end-group analysis) spectroscopic analysis. The thermal properties of the polyurethanes were determined using DSC and their solubility in common aprotic organic solvents was also assessed and related to their structural composition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).
Resumo:
We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We �rst show that by using a general functional decomposition for space-time dependent forcings, we can de�ne elementary susceptibilities that allow to construct the response of the system to general perturbations. Starting from the de�nition of SRB measure, we then study the consequence of taking di�erent sampling schemes for analysing the response of the system. We show that only a speci�c choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows to obtain the formula �rst presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be �ne-tuned to make the de�nition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analyzing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
The objective of this paper is to apply the mis-specification (M-S) encompassing perspective to the problem of choosing between linear and log-linear unit-root models. A simple M-S encompassing test, based on an auxiliary regression stemming from the conditional second moment, is proposed and its empirical size and power are investigated using Monte Carlo simulations. It is shown that by focusing on the conditional process the sampling distributions of the relevant statistics are well behaved under both the null and alternative hypotheses. The proposed M-S encompassing test is illustrated using US total disposable income quarterly data.
Resumo:
Objective Sustained attention problems are common in people with autism spectrum disorder (ASD) and may have significant implications for the diagnosis and management of ASD and associated comorbidities. Furthermore, ASD has been associated with atypical structural brain development. The authors used functional MRI to investigate the functional brain maturation of attention between childhood and adulthood in people with ASD. Method Using a parametrically modulated sustained attention/vigilance task, the authors examined brain activation and its linear correlation with age between childhood and adulthood in 46 healthy male adolescents and adults (ages 11–35 years) with ASD and 44 age- and IQ-matched typically developing comparison subjects. Results Relative to the comparison group, the ASD group had significantly poorer task performance and significantly lower activation in inferior prefrontal cortical, medial prefrontal cortical, striato-thalamic, and lateral cerebellar regions. A conjunction analysis of this analysis with group differences in brain-age correlations showed that the comparison group, but not the ASD group, had significantly progressively increased activation with age in these regions between childhood and adulthood, suggesting abnormal functional brain maturation in ASD. Several regions that showed both abnormal activation and functional maturation were associated with poorer task performance and clinical measures of ASD and inattention. Conclusions The results provide first evidence that abnormalities in sustained attention networks in individuals with ASD are associated with underlying abnormalities in the functional brain maturation of these networks between late childhood and adulthood.
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.