76 resultados para Linear mixed effect models
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background Hypothalamic–pituitary–adrenal (HPA) axis functioning has been implicated in the development of stress-related psychiatric diagnoses and response to adverse life experiences. This study aimed to investigate the association between genetic and epigenetics in HPA axis and response to cognitive behavior therapy (CBT). Methods Children with anxiety disorders were recruited into the Genes for Treatment project (GxT, N = 1,152). Polymorphisms of FKBP5 and GR were analyzed for association with response to CBT. Percentage DNA methylation at the FKBP5 and GR promoter regions was measured before and after CBT in a subset (n = 98). Linear mixed effect models were used to investigate the relationship between genotype, DNA methylation, and change in primary anxiety disorder severity (treatment response). Results Treatment response was not associated with FKBP5 and GR polymorphisms, or pretreatment percentage DNA methylation. However, change in FKBP5 DNA methylation was nominally significantly associated with treatment response. Participants who demonstrated the greatest reduction in severity decreased in percentage DNA methylation during treatment, whereas those with little/no reduction in severity increased in percentage DNA methylation. This effect was driven by those with one or more FKBP5 risk alleles, with no association seen in those with no FKBP5 risk alleles. No significant association was found between GR methylation and response. Conclusions Allele-specific change in FKBP5 methylation was associated with treatment response. This is the largest study to date investigating the role of HPA axis related genes in response to a psychological therapy. Furthermore, this is the first study to demonstrate that DNA methylation changes may be associated with response to psychological therapies in a genotype-dependent manner.
Resumo:
Background We previously reported an association between 5HTTLPR genotype and outcome following cognitive–behavioural therapy (CBT) in child anxiety (Cohort 1). Children homozygous for the low-expression short-allele showed more positive outcomes. Other similar studies have produced mixed results, with most reporting no association between genotype and CBT outcome. Aims To replicate the association between 5HTTLPR and CBT outcome in child anxiety from the Genes for Treatment study (GxT Cohort 2, n = 829). Method Logistic and linear mixed effects models were used to examine the relationship between 5HTTLPR and CBT outcomes. Mega-analyses using both cohorts were performed. Results There was no significant effect of 5HTTLPR on CBT outcomes in Cohort 2. Mega-analyses identified a significant association between 5HTTLPR and remission from all anxiety disorders at follow-up (odds ratio 0.45, P = 0.014), but not primary anxiety disorder outcomes. Conclusions The association between 5HTTLPR genotype and CBT outcome did not replicate. Short-allele homozygotes showed more positive treatment outcomes, but with small, non-significant effects. Future studies would benefit from utilising whole genome approaches and large, homogenous samples.
Resumo:
Second language acquisition researchers often face particular challenges when attempting to generalize study findings to the wider learner population. For example, language learners constitute a heterogeneous group, and it is not always clear how a study’s findings may generalize to other individuals who may differ in terms of language background and proficiency, among many other factors. In this paper, we provide an overview of how mixed-effects models can be used to help overcome these and other issues in the field of second language acquisition. We provide an overview of the benefits of mixed-effects models and a practical example of how mixed-effects analyses can be conducted. Mixed-effects models provide second language researchers with a powerful statistical tool in the analysis of a variety of different types of data.
Resumo:
A retrospective cross-sectional study was conducted on 200 randomly selected smallholder farms from a mixed dairy farming system in Tanga, Tanzania, between January and April 1999. We estimated the frequency and determinants of long calving interval (LCI), retention of fetal membrane (RFM), dystocia, and abortion in smallholder crossbred cattle and explored birth trends. The mean calving interval was 500 days and birth rate was 65 per 100 cow-years. Dystocia was reported to affect 58% of calvings, and 17.2% of animals suffered RFM. Using mixed effect models, the variables associated with LCI, RFM and dystocia were breed, level of exotic blood and condition score. Zebu breeding was associated with LCI (odds ratio (OR) = 2.3, p = 0.041) and Friesian breeding with lower odds for RF (OR = 0.26, p = 0.020). Animals with higher levels of exotic blood had lower odds for evidence of dystocia (OR = 0.45, p = 0.021). Evidence of dystocia was significantly associated with poor condition score (beta = -1.10, p = 0.001). Our observations suggest that LCIs are common in smallholder dairy farms in this region and a likely source of economic loss. Dystocia, RFM, poor condition score and mineral deficiency were common problems and were possibly linked to LCI.
Resumo:
BACKGROUND: Intronic variation in the FTO (fat mass and obesity-associated) gene has been unequivocally associated with increased body mass index (BMI; in kg/m(2)) and the risk of obesity in populations of different ethnicity. OBJECTIVE: We examined whether this robust genetic predisposition to obesity can be attenuated by being more physically active. DESIGN: The FTO variant rs1121980 was genotyped in 20,374 participants (39-79 y of age) from the European Prospective Investigation into Cancer and Nutrition-Norfolk Study, an ethnically homogeneous population-based cohort. Physical activity (PA) was assessed with a validated self-reported questionnaire. The interaction between rs1121980 and PA on BMI and waist circumference (WC) was examined by including the interaction term in mixed-effect models. RESULTS: We confirmed that the risk (T) allele of rs1121980 was significantly associated with BMI (0.31-unit increase per allele; P < 0.001) and WC (0.77-cm increase per allele; P < 0.001). The PA level attenuated the effect of rs1121980 on BMI and WC; ie, whereas in active individuals the risk allele increased BMI by 0.25 per allele, the increase in BMI was significantly (P for interaction = 0.004) more pronounced (76%) in inactive individuals (0.44 per risk allele). We observed similar effects for WC (P for interaction = 0.02): the risk allele increased WC by 1.04 cm per allele in inactive individuals but by only 0.64 cm in active individuals. CONCLUSIONS: Our results showed that PA attenuates the effect of the FTO rs1121980 genotype on BMI and WC. This observation has important public health implications because we showed that a genetic susceptibility to obesity induced by FTO variation can be overcome, at least in part, by adopting a physically active lifestyle.
Resumo:
Accurate knowledge of species’ habitat associations is important for conservation planning and policy. Assessing habitat associations is a vital precursor to selecting appropriate indicator species for prioritising sites for conservation or assessing trends in habitat quality. However, much existing knowledge is based on qualitative expert opinion or local scale studies, and may not remain accurate across different spatial scales or geographic locations. Data from biological recording schemes have the potential to provide objective measures of habitat association, with the ability to account for spatial variation. We used data on 50 British butterfly species as a test case to investigate the correspondence of data-derived measures of habitat association with expert opinion, from two different butterfly recording schemes. One scheme collected large quantities of occurrence data (c. 3 million records) and the other, lower quantities of standardised monitoring data (c. 1400 sites). We used general linear mixed effects models to derive scores of association with broad-leaf woodland for both datasets and compared them with scores canvassed from experts. Scores derived from occurrence and abundance data both showed strongly positive correlations with expert opinion. However, only for occurrence data did these fell within the range of correlations between experts. Data-derived scores showed regional spatial variation in the strength of butterfly associations with broad-leaf woodland, with a significant latitudinal trend in 26% of species. Sub-sampling of the data suggested a mean sample size of 5000 occurrence records per species to gain an accurate estimation of habitat association, although habitat specialists are likely to be readily detected using several hundred records. Occurrence data from recording schemes can thus provide easily obtained, objective, quantitative measures of habitat association.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.
Resumo:
As in any field of scientific inquiry, advancements in the field of second language acquisition (SLA) rely in part on the interpretation and generalizability of study findings using quantitative data analysis and inferential statistics. While statistical techniques such as ANOVA and t-tests are widely used in second language research, this review article provides a review of a class of newer statistical models that have not yet been widely adopted in the field, but have garnered interest in other fields of language research. The class of statistical models called mixed-effects models are introduced, and the potential benefits of these models for the second language researcher are discussed. A simple example of mixed-effects data analysis using the statistical software package R (R Development Core Team, 2011) is provided as an introduction to the use of these statistical techniques, and to exemplify how such analyses can be reported in research articles. It is concluded that mixed-effects models provide the second language researcher with a powerful tool for the analysis of a variety of types of second language acquisition data.
Resumo:
Background Anxiety disorders are common, and cognitive–behavioural therapy (CBT) is a first-line treatment. Candidate gene studies have suggested a genetic basis to treatment response, but findings have been inconsistent. Aims To perform the first genome-wide association study (GWAS) of psychological treatment response in children with anxiety disorders (n = 980). Method Presence and severity of anxiety was assessed using semi-structured interview at baseline, on completion of treatment (post-treatment), and 3 to 12 months after treatment completion (follow-up). DNA was genotyped using the Illumina Human Core Exome-12v1.0 array. Linear mixed models were used to test associations between genetic variants and response (change in symptom severity) immediately post-treatment and at 6-month follow-up. Results No variants passed a genome-wide significance threshold (P = 5×10−8) in either analysis. Four variants met criteria for suggestive significance (P<5×10−6) in association with response post-treatment, and three variants in the 6-month follow-up analysis. Conclusions This is the first genome-wide therapygenetic study. It suggests no common variants of very high effect underlie response to CBT. Future investigations should maximise power to detect single-variant and polygenic effects by using larger, more homogeneous cohorts.
Resumo:
Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.
Resumo:
The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.
Resumo:
We developed three different knowledge-dissemination methods for educating Tanzanian smallholder farmers about mastitis in their dairy cattle. The effectiveness of these methods (and their combinations) was evaluated and quantified using a randomised controlled trial and multilevel statistical modelling. To our knowledge, this is the first study that has used such techniques to evaluate the effectiveness of different knowledge-dissemination interventions for adult learning in developing countries. Five different combinations of knowledge-dissemination method were compared: 'diagrammatic handout' ('HO'), 'village meeting' ('VM'), 'village meeting and video' ('VM + V), 'village meeting and diagrammatic handout' ('VM + HO') and 'village meeting, video and diagrammatic handout' ('VM + V + HO'). Smallholder dairy farmers were exposed to only one of these interventions, and the effectiveness of each was compared to a control ('C') group, who received no intervention. The mastitis knowledge of each farmer (n = 256) was evaluated by questionnaire both pre- and post-dissemination. Generalised linear mixed models were used to evaluate the effectiveness of the different interventions. The outcome variable considered was the probability of volunteering correct responses to mastitis questions post-dissemination, with 'village' and 'farmer' considered as random effects in the model. Results showed that all five interventions, 'HO' (odds ratio (OR) = 3.50, 95% confidence intervals (CI) = 3.10, 3.96), 'VM + V + HO' (OR = 3.34, 95% CI = 2.94, 3.78), 'VM + HO, (OR=3.28, 95% CI=2.90, 3.71), WM+V (OR=3.22, 95% CI=2.84, 3.64) and 'VM' (OR = 2.61, 95% CI = 2.31, 2.95), were significantly (p < 0.0001) more effective at disseminating mastitis knowledge than no intervention. In addition, the 'VM' method was less effective at disseminating mastitis knowledge than other interventions. Combinations of methods showed no advantage over the diagrammatic handout alone. Other explanatory variables with significant positive associations on mastitis knowledge included education to secondary school level or higher, and having previously learned about mastitis by reading pamphlets or attendance at an animal-health course. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Using mixed logit models to analyse choice data is common but requires ex ante specification of the functional forms of preference distributions. We make the case for greater use of bounded functional forms and propose the use of the Marginal Likelihood, calculated using Bayesian techniques, as a single measure of model performance across non nested mixed logit specifications. Using this measure leads to very different rankings of model specifications compared to alternative rule of thumb measures. The approach is illustrated using data from a choice experiment regarding GM food types which provides insights regarding the recent WTO dispute between the EU and the US, Canada and Argentina and whether labelling and trade regimes should be based on the production process or product composition.