221 resultados para Linear filters
em CentAUR: Central Archive University of Reading - UK
Resumo:
The tap-length, or the number of the taps, is an important structural parameter of the linear MMSE adaptive filter. Although the optimum tap-length that balances performance and complexity varies with scenarios, most current adaptive filters fix the tap-length at some compromise value, making them inefficient to implement especially in time-varying scenarios. A novel gradient search based variable tap-length algorithm is proposed, using the concept of the pseudo-fractional tap-length, and it is shown that the new algorithm can converge to the optimum tap-length in the mean. Results of computer simulations are also provided to verify the analysis.
Resumo:
Ensemble clustering (EC) can arise in data assimilation with ensemble square root filters (EnSRFs) using non-linear models: an M-member ensemble splits into a single outlier and a cluster of M−1 members. The stochastic Ensemble Kalman Filter does not present this problem. Modifications to the EnSRFs by a periodic resampling of the ensemble through random rotations have been proposed to address it. We introduce a metric to quantify the presence of EC and present evidence to dispel the notion that EC leads to filter failure. Starting from a univariate model, we show that EC is not a permanent but transient phenomenon; it occurs intermittently in non-linear models. We perform a series of data assimilation experiments using a standard EnSRF and a modified EnSRF by a resampling though random rotations. The modified EnSRF thus alleviates issues associated with EC at the cost of traceability of individual ensemble trajectories and cannot use some of algorithms that enhance performance of standard EnSRF. In the non-linear regimes of low-dimensional models, the analysis root mean square error of the standard EnSRF slowly grows with ensemble size if the size is larger than the dimension of the model state. However, we do not observe this problem in a more complex model that uses an ensemble size much smaller than the dimension of the model state, along with inflation and localisation. Overall, we find that transient EC does not handicap the performance of the standard EnSRF.
Resumo:
Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.
Resumo:
The spectral design and fabrication of cooled (7K) mid-infrared dichroic beamsplitters and bandpass filter coatings for the MIRI spectrometer and imager are described. Design methods to achieve the spectral performance and coating materials are discussed.
Resumo:
The sources of ordinate error in FTIR spectrometers are reviewed with reference to measuring small out-of-band features in the spectra of bandpass filters. Procedures for identifying instrumental artefacts are described. It is shown that features well below 0.01%T can be measured reliably.
Resumo:
The linear viscoelastic (LVE) spectrum is one of the primary fingerprints of polymer solutions and melts, carrying information about most relaxation processes in the system. Many single chain theories and models start with predicting the LVE spectrum to validate their assumptions. However, until now, no reliable linear stress relaxation data were available from simulations of multichain systems. In this work, we propose a new efficient way to calculate a wide variety of correlation functions and mean-square displacements during simulations without significant additional CPU cost. Using this method, we calculate stress−stress autocorrelation functions for a simple bead−spring model of polymer melt for a wide range of chain lengths, densities, temperatures, and chain stiffnesses. The obtained stress−stress autocorrelation functions were compared with the single chain slip−spring model in order to obtain entanglement related parameters, such as the plateau modulus or the molecular weight between entanglements. Then, the dependence of the plateau modulus on the packing length is discussed. We have also identified three different contributions to the stress relaxation: bond length relaxation, colloidal and polymeric. Their dependence on the density and the temperature is demonstrated for short unentangled systems without inertia.
Resumo:
Baroclinic wave development is investigated for unstable parallel shear flows in the limit of vanishing normal-mode growth rate. This development is described in terms of the propagation and interaction mechanisms of two coherent structures, called counter-propagating Rossby waves (CRWs). It is shown that, in this limit of vanishing normal-mode growth rate, arbitrary initial conditions produce sustained linear amplification of the marginally neutral normal mode (mNM). This linear excitation of the mNM is subsequently interpreted in terms of a resonance phenomenon. Moreover, while the mathematical character of the normal-mode problem changes abruptly as the bifurcation point in the dispersion diagram is encountered and crossed, it is shown that from an initial-value viewpoint, this transition is smooth. Consequently, the resonance interpretation remains relevant (albeit for a finite time) for wavenumbers slightly different from the ones defining cut-off points. The results are further applied to a two-layer version of the classic Eady model in which the upper rigid lid has been replaced by a simple stratosphere.
Resumo:
We present the extension of a methodology to solve moving boundary value problems from the second-order case to the case of the third-order linear evolution PDE qt + qxxx = 0. This extension is the crucial step needed to generalize this methodology to PDEs of arbitrary order. The methodology is based on the derivation of inversion formulae for a class of integral transforms that generalize the Fourier transform and on the analysis of the global relation associated with the PDE. The study of this relation and its inversion using the appropriate generalized transform are the main elements of the proof of our results.
Resumo:
The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model (HadCM3) using a Linear Inverse Modelling (LIM) approach. It is found that the evolution of temperature and salinity in the Atlantic, and the strength of the meridional overturning circulation (MOC), can be effectively described by a linear dynamical system forced by white noise. The forecasts produced using this linear model are more skillful than other reference forecasts for several decades. Furthermore, significant non-normal amplification is found under several different norms. The regions from which this growth occurs are found to be fairly shallow and located in the far North Atlantic. Initially, anomalies in the Nordic Seas impact the MOC, and the anomalies then grow to fill the entire Atlantic basin, especially at depth, over one to three decades. It is found that the structure of the optimal initial condition for amplification is sensitive to the norm employed, but the initial growth seems to be dominated by MOC-related basin scale changes, irrespective of the choice of norm. The consistent identification of the far North Atlantic as the most sensitive region for small perturbations suggests that additional observations in this region would be optimal for constraining decadal climate predictions.