23 resultados para Linear equations

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents several new families of cumulant-based linear equations with respect to the inverse filter coefficients for deconvolution (equalisation) and identification of nonminimum phase systems. Based on noncausal autoregressive (AR) modeling of the output signals and three theorems, these equations are derived for the cases of 2nd-, 3rd and 4th-order cumulants, respectively, and can be expressed as identical or similar forms. The algorithms constructed from these equations are simpler in form, but can offer more accurate results than the existing methods. Since the inverse filter coefficients are simply the solution of a set of linear equations, their uniqueness can normally be guaranteed. Simulations are presented for the cases of skewed series, unskewed continuous series and unskewed discrete series. The results of these simulations confirm the feasibility and efficiency of the algorithms.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The long time–evolution of disturbances to slowly–varying solutions of partial differential equations is subject to the adiabatic invariance of the wave action. Generally, this approximate conservation law is obtained under the assumption that the partial differential equations are derived from a variational principle or have a canonical Hamiltonian structure. Here, the wave action conservation is examined for equations that possess a non–canonical (Poisson) Hamiltonian structure. The linear evolution of disturbances in the form of slowly varying wavetrains is studied using a WKB expansion. The properties of the original Hamiltonian system strongly constrain the linear equations that are derived, and this is shown to lead to the adiabatic invariance of a wave action. The connection between this (approximate) invariance and the (exact) conservation laws of pseudo–energy and pseudomomentum that exist when the basic solution is exactly time and space independent is discussed. An evolution equation for the slowly varying phase of the wavetrain is also derived and related to Berry's phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper represents the last technical contribution of Professor Patrick Parks before his untimely death in February 1995. The remaining authors of the paper, which was subsequently completed, wish to dedicate the article to Patrick. A frequency criterion for the stability of solutions of linear difference equations with periodic coefficients is established. The stability criterion is based on a consideration of the behaviour of a frequency hodograph with respect to the origin of coordinates in the complex plane. The formulation of this criterion does not depend on the order of the difference equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternative meshes of the sphere and adaptive mesh refinement could be immensely beneficial for weather and climate forecasts, but it is not clear how mesh refinement should be achieved. A finite-volume model that solves the shallow-water equations on any mesh of the surface of the sphere is presented. The accuracy and cost effectiveness of four quasi-uniform meshes of the sphere are compared: a cubed sphere, reduced latitude–longitude, hexagonal–icosahedral, and triangular–icosahedral. On some standard shallow-water tests, the hexagonal–icosahedral mesh performs best and the reduced latitude–longitude mesh performs well only when the flow is aligned with the mesh. The inclusion of a refined mesh over a disc-shaped region is achieved using either gradual Delaunay, gradual Voronoi, or abrupt 2:1 block-structured refinement. These refined regions can actually degrade global accuracy, presumably because of changes in wave dispersion where the mesh is highly nonuniform. However, using gradual refinement to resolve a mountain in an otherwise coarse mesh can improve accuracy for the same cost. The model prognostic variables are height and momentum collocated at cell centers, and (to remove grid-scale oscillations of the A grid) the mass flux between cells is advanced from the old momentum using the momentum equation. Quadratic and upwind biased cubic differencing methods are used as explicit corrections to a fast implicit solution that uses linear differencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider boundary value problems posed on an interval [0,L] for an arbitrary linear evolution equation in one space dimension with spatial derivatives of order n. We characterize a class of such problems that admit a unique solution and are well posed in this sense. Such well-posed boundary value problems are obtained by prescribing N conditions at x=0 and n–N conditions at x=L, where N depends on n and on the sign of the highest-degree coefficient n in the dispersion relation of the equation. For the problems in this class, we give a spectrally decomposed integral representation of the solution; moreover, we show that these are the only problems that admit such a representation. These results can be used to establish the well-posedness, at least locally in time, of some physically relevant nonlinear evolution equations in one space dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)