221 resultados para Linear Capillary Instability
em CentAUR: Central Archive University of Reading - UK
Resumo:
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.
Resumo:
We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.
Resumo:
The use of high-melting fibres as linear nuclei for quiescent polymeric melts is instrumental in providing the superior mechanical properties of polymeric self-composites. It also has inherent advantages in the elucidation of fundamental aspects of polymeric crystallization and self-organization, not least in allowing systematic microscopic studies of polymeric crystallization from nucleation through to the growth interface. This has demonstrated explicitly that lamellae develop in two distinct ways, for slower and faster growth, depending on whether fold packing has or has not time to order before the next molecular layer is added with only the former leading to banded growth in linear polyethylene. Other gains in understanding concern cellulation and morphological instability, internuclear interference, isothermal lamellar thickening and banded growth being a consequence of the partial relief of initial surface stress. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The structure of turbulence in the ocean surface layer is investigated using a simplified semi-analytical model based on rapid-distortion theory. In this model, which is linear with respect to the turbulence, the flow comprises a mean Eulerian shear current, the Stokes drift of an irrotational surface wave, which accounts for the irreversible effect of the waves on the turbulence, and the turbulence itself, whose time evolution is calculated. By analysing the equations of motion used in the model, which are linearised versions of the Craik–Leibovich equations containing a ‘vortex force’, it is found that a flow including mean shear and a Stokes drift is formally equivalent to a flow including mean shear and rotation. In particular, Craik and Leibovich’s condition for the linear instability of the first kind of flow is equivalent to Bradshaw’s condition for the linear instability of the second. However, the present study goes beyond linear stability analyses by considering flow disturbances of finite amplitude, which allows calculating turbulence statistics and addressing cases where the linear stability is neutral. Results from the model show that the turbulence displays a structure with a continuous variation of the anisotropy and elongation, ranging from streaky structures, for distortion by shear only, to streamwise vortices resembling Langmuir circulations, for distortion by Stokes drift only. The TKE grows faster for distortion by a shear and a Stokes drift gradient with the same sign (a situation relevant to wind waves), but the turbulence is more isotropic in that case (which is linearly unstable to Langmuir circulations).
Resumo:
A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recovering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-hydrostatic limits.
Resumo:
A morphological instability of a mushy layer due to a forced flow in the melt is analysed. The instability is caused by flow induced in the mushy layer by Bernoulli suction at the crests of a sinusoidally perturbed mush–melt interface. The flow in the mushy layer advects heat away from crests which promotes solidification. Two linear stability analyses are presented: the fundamental mechanism for instability is elucidated by considering the case of uniform flow of an inviscid melt; a more complete analysis is then presented for the case of a parallel shear flow of a viscous melt. The novel instability mechanism we analyse here is contrasted with that investigated by Gilpin et al. (1980) and is found to be more potent for the case of newly forming sea ice.
Resumo:
We investigate baroclinic instability in flow conditions relevant to hot extrasolar planets. The instability is important for transporting and mixing heat, as well as for influencing large-scale variability on the planets. Both linear normal mode analysis and non-linear initial value cal- culations are carried out – focusing on the freely-evolving, adiabatic situation. Using a high- resolution general circulation model (GCM) which solves the traditional primitive equations, we show that large-scale jets similar to those observed in current GCM simulations of hot ex- trasolar giant planets are likely to be baroclinically unstable on a timescale of few to few tens of planetary rotations, generating cyclones and anticyclones that drive weather systems. The growth rate and scale of the most unstable mode obtained in the linear analysis are in qual- itative, good agreement with the full non-linear calculations. In general, unstable jets evolve differently depending on their signs (eastward or westward), due to the change in sign of the jet curvature. For jets located at or near the equator, instability is strong at the flanks – but not at the core. Crucially, the instability is either poorly or not at all captured in simulations with low resolution and/or high artificial viscosity. Hence, the instability has not been observed or emphasized in past circulation studies of hot extrasolar planets.
Resumo:
It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low levels