12 resultados para Limbs

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits(1-3) but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth(4-7). Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land(4,5,8), extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to ease control, the links between actuators and robotic limbs are generally made to be as stiff as possible. This is in contrast to natural limbs, where compliance is present. Springs have been added to the drive train between the actuator and load to imitate this natural compliance. The majority of these springs have been in series between the actuator and load. However, a more biologically inspired approach is taken, here springs have been used in parallel to oppose each other. The paper will describe the application of parallel extension springs in a robot arm in order to give it compliance. Advantages and disadvantages of this application are discussed along with various control strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is common to make the links between actuators and robotic limbs as stiff as possible, in complete contrast to natural systems, where compliance is present. In the past, to create some compliance in a drive, springs have been added to the link between the actuator and load. Many of these springs have been in series with the drive, but recently a more 'biological' approach has been taken where two springs have been used in parallel to counteract each other. This paper describes the application of parallel extension springs in a robot arm in order to give it compliance. Advantages and disadvantages of this application are discussed, along with various control strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To describe the wrist kinematics during movement through free range of motion and activities of daily living using a cyclical task. Design. The wrist angles were initially calculated in a calibration trial and then in two selected activities of daily living (jar opening and carton pouring). Background. Existing studies which describe the wrist movement do not address the specific application of daily activities. Moreover, the data presented from subject to subject may differ simply because of the non-cyclical nature of the upper limbs movements. Methods. The coordinates of external markers attached to bone references on the forearm and dorsal side of the hand were obtained using an optical motion capture system. The wrist angles were derived from free motion trials and successively calculated in four healthy subjects for two specific cyclical daily activities (opening a jar and pouring from a carton). Results. The free motions trial highlighted the interaction between the wrist angles. Both the jar opening and the carton pouring activity showed a repetitive pattern for the three angles within the cycle length. In the jar-opening task, the standard deviation for the whole population was 10.8degrees for flexion-extension, 5.3degrees for radial-ulnar deviation and 10.4degrees for pronation-supination. In the carton-pouring task, the standard deviation for the whole population was 16.0degrees for flexion-extension, 3.4degrees for radial-ulnar deviation and 10.7degrees for pro nation-supination. Conclusion. Wrist kinematics in healthy subjects can be successfully described by the rotations about the axes of marker-defined coordinates systems during free range of motion and daily activities using cyclical tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral content of the myoelectric signals from the muscles of the remnant forearms of three persons with congenital absences (CA) of their forearms was compared with signals from their intact contra-lateral limbs, similar muscles in three persons with acquired losses (AL) and seven persons without absences [no loss (NL)]. The observed bandwidth for the CA subjects was broader with peak energy between 200 and 300 Hz. While the signals from the contra-lateral limbs and the AL and NL subjects was in the 100-150 Hz range: The mean skew of the signals from the AL subjects was 46.3 +/- 6.7 and those with NL of 45.4 +/- 8.7, while the signals from those with CAs had a skew of 11.0 +/- 11. The structure of the muscles of one CA subject was observed ultrasonically. The muscle showed greater disruption than normally developed muscles. It is speculated that the myographic signal reflects the structure of the muscle. which has developed in a more disorganized manner as a result of the muscle not being stretched by other muscles across the missing distal joint, even in the muscles that are used regularly to control arm prostheses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drake Passage is the narrowest constriction of the Antarctic Circumpolar Current (ACC) in the Southern Ocean, with implications for global ocean circulation and climate. We review the long-term sustained monitoring programmes that have been conducted at Drake Passage, dating back to the early part of the twentieth century. Attention is drawn to numerous breakthroughs that have been made from these programmes, including (a) the first determinations of the complex ACC structure and early quantifications of its transport; (b) realization that the ACC transport is remarkably steady over interannual and longer periods, and a growing understanding of the processes responsible for this; (c) recognition of the role of coupled climate modes in dictating the horizontal transport, and the role of anthropogenic processes in this; (d) understanding of mechanisms driving changes in both the upper and lower limbs of the Southern Ocean overturning circulation, and their impacts. It is argued that monitoring of this passage remains a high priority for oceanographic and climate research, but that strategic improvements could be made concerning how this is conducted. In particular, long-term programmes should concentrate on delivering quantifications of key variables of direct relevance to large-scale environmental issues: in this context, the time-varying overturning circulation is, if anything, even more compelling a target than the ACC flow. Further, there is a need for better international resource-sharing, and improved spatio-temporal coordination of the measurements. If achieved, the improvements in understanding of important climatic issues deriving from Drake Passage monitoring can be sustained into the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on the cortical sources of nociceptive laser-evoked brain potentials (LEPs) began almost two decades ago (Tarkka and Treede, 1993). Whereas there is a large consensus on the sources of the late part of the LEP waveform (N2 and P2 waves), the relative contribution of the primary somatosensory cortex (S1) to the early part of the LEP waveform (N1 wave) is still debated. To address this issue we recorded LEPs elicited by the stimulation of four limbs in a large population (n=35). Early LEP generators were estimated both at single-subject and group level, using three different approaches: distributed source analysis, dipolar source modeling, and probabilistic independent component analysis (ICA). We show that the scalp distribution of the earliest LEP response to hand stimulation was maximal over the central-parietal electrodes contralateral to the stimulated side, while that of the earliest LEP response to foot stimulation was maximal over the central-parietal midline electrodes. Crucially, all three approaches indicated hand and foot S1 areas as generators of the earliest LEP response. Altogether, these findings indicate that the earliest part of the scalp response elicited by a selective nociceptive stimulus is largely explained by activity in the contralateral S1, with negligible contribution from the secondary somatosensory cortex (S2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of −58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s−1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human ICT implants, such as RFID implants, cochlear implants, cardiac pacemakers, Deep Brain Stimulation, bionic limbs connected to the nervous system, and networked cognitive prostheses, are becoming increasingly complex. With ever-growing data processing functionalities in these implants, privacy and security become vital concerns. Electronic attacks on human ICT implants can cause significant harm, both to implant subjects and to their environment. This paper explores the vulnerabilities which human implants pose to crime victimisation in light of recent technological developments, and analyses how the law can deal with emerging challenges of what may well become the next generation of cybercrime: attacks targeted at technology implanted in the human body. After a state-of-the-art description of relevant types of human implants and a discussion how these implants challenge existing perceptions of the human body, we describe how various modes of attacks, such as sniffing, hacking, data interference, and denial of service, can be committed against implants. Subsequently, we analyse how these attacks can be assessed under current substantive and procedural criminal law, drawing on examples from UK and Dutch law. The possibilities and limitations of cybercrime provisions (eg, unlawful access, system interference) and bodily integrity provisions (eg, battery, assault, causing bodily harm) to deal with human-implant attacks are analysed. Based on this assessment, the paper concludes that attacks on human implants are not only a new generation in the evolution of cybercrime, but also raise fundamental questions on how criminal law conceives of attacks. Traditional distinctions between physical and non-physical modes of attack, between human bodies and things, between exterior and interior of the body need to be re-interpreted in light of developments in human implants. As the human body and technology become increasingly intertwined, cybercrime legislation and body-integrity crime legislation will also become intertwined, posing a new puzzle that legislators and practitioners will sooner or later have to solve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A case study of a goat metatarsal exhibiting a complex diaphyseal fracture from Pottery Neolithic Jarmo in the Central Zagros region of the eastern Fertile Crescent is here described and analysed. The Central Zagros is one of the areas with the earliest evidence for goat domestication. The significance of the pathology may be viewed within the context of domestic goat ecology in the landscape of Jarmo, potentially impacting browsing behaviour (goats raise themselves on their hind limbs to browse) and movement with the herd in the landscape (the terrain around Jarmo is very steep in places, which would be difficult for an animal to navigate on three legs). In the light of this, possible levels of care that the Neolithic human community may have afforded this animal are discussed – from a situation where therapeutic intervention may have occurred, to one of stall confinement of the animal to allow the pathology to heal, to a position of simple awareness of the condition – and how this impacts on our understanding of changes in attitudes towards animals through the process of domestication.