64 resultados para Least cost

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

When formulating least-cost poultry diets, ME concentration should be optimised by an iterative procedure, not entered as a fixed value. This iteration must calculate profit margins by taking into account the way in which feed intake and saleable outputs vary with ME concentration. In the case of broilers, adjustment of critical amino acid contents in direct proportion to ME concentration does not result in birds of equal fatness. To avoid an increase in fat deposition at higher energy levels, it is proposed that amino acid specifications should be adjusted in proportion to changes in the net energy supplied by the feed. A model is available which will both interpret responses to amino acids in laying trials and give economically optimal estimates of amino acid inputs for practical feed formulation. Flocks coming into lay and flocks nearing the end of the pullet year have bimodal distributions of rates of lay, with the result that calculations of requirement based on mean output will underestimate the optimal amino acid input for the flock. Chick diets containing surplus protein can lead to impaired utilisation of the first-limiting amino acid. This difficulty can be avoided by stating amino acid requirements as a proportion of the protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firms are faced with a wider set of choices when they identify a need for new office space. They can build or purchase accommodation, lease space for long or short periods with or without the inclusion of services, or they can use “instant office” solutions provided by serviced office operators. But how do they evaluate these alternatives and are they able to make rational choices? The research found that the shortening of business horizons lead to the desire for more office space on short-term contracts often with the inclusion of at least some facilities management and business support services. The need for greater flexibility, particularly in financial terms, was highlighted as an important criteria when selecting new office accommodation. The current office portfolios held were perceived not to meet these requirements. However, there was often a lack of good quality data available within occupiers which could be used to help them analyse the range of choices in the market. Additionally, there were other organisational constraints to making decisions about inclusive real estate products. These included fragmentation of decisions-making, internal politics and the lack of assessment of business risk alongside real estate risk. Overall therefore, corporate occupiers themselves act as an interial force to the development of new and innovative real estate products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Khartoum like many cities in least developing countries (LDCs) still witnesses huge influx of people. Accommodation of the new comers leads to encroachment on the cultivation land leads to sprawl expansion of Greater Khartoum. The city expanded in diameter from 16.8 km in 1955 to 802.5 km in 1998. Most of this horizontal expansion was residential. In 2008 Khartoum accommodated 29% of the urban population of Sudan. Today Khartoum is considered as one of 43 major cities in Africa that accommodates more than 1 million inhabitants. Most of new comers live in the outskirts of the city e.g. Dar El-Salam and Mayo neighbourhoods. The majority of those new comers built their houses especially the walls from mud, wood, straw and sacks. Selection of building materials usually depends on its price regardless of the environmental impact, quality, thermal performance and life of the material. Most of the time, this results in increasing the cost with variables of impacts over the environment during the life of the building. Therefore, consideration of the environmental impacts, social impacts and economic impacts is crucial in the selection of any building material. Decreasing such impacts could lead to more sustainable housing. Comparing the sustainability of the available wall building materials for low cost housing in Khartoum is carried out through the life cycle assessment (LCA) technique. The purpose of this paper is to compare the most available local building materials for walls for the urban poor of Khartoum from a sustainability point of view by going through the manufacturing of the materials, the use of these materials and then the disposal of the materials after their life comes to an end. Findings reveal that traditional red bricks couldn’t be considered as a sustainable wall building material that will draw the future of the low cost housing in Greater Khartoum. On the other hand, results of the comparison lead to draw attention to the wide range of the soil techniques and to its potentials to be a promising sustainable wall material for urban low cost housing in Khartoum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new formulation of a pose refinement technique using ``active'' models is described. An error term derived from the detection of image derivatives close to an initial object hypothesis is linearised and solved by least squares. The method is particularly well suited to problems involving external geometrical constraints (such as the ground-plane constraint). We show that the method is able to recover both the pose of a rigid model, and the structure of a deformable model. We report an initial assessment of the performance and cost of pose and structure recovery using the active model in comparison with our previously reported ``passive'' model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.