11 resultados para Learning object
em CentAUR: Central Archive University of Reading - UK
Resumo:
A self study course for learning to program using the C programming language has been developed. A Learning Object approach was used in the design of the course. One of the benefits of the Learning Object approach is that the learning material can be reused for different purposes. 'Me course developed is designed so that learners can choose the pedagogical approach most suited to their personal learning requirements. For all learning approaches a set of common Assessment Learning Objects (ALOs or tests) have been created. The design of formative assessments with ALOs can be carried out by the Instructional Designer grouping ALOs to correspond to a specific assessment intention. The course is non-credit earning, so there is no summative assessment, all assessment is formative. In this paper examples of ALOs and their uses is presented together with their uses as decided by the Instructional Designer and learner. Personalisation of the formative assessment of skills can be decided by the Instructional Designer or the learner using a repository of pre-designed ALOs. The process of combining ALOs can be carried out manually or in a semi-automated way using metadata that describes the ALO and the skill it is designed to assess.
Resumo:
As the learning paradigm shifts to a more personalised learning process, users need dynamic feedback from their knowledge path. Learning Management Systems (LMS) offer customised feedback dependent on questions and the answers given. However these LMSs are not designed to generate personalised feedback for an individual learner, tutor and instructional designer. This paper presents an approach for generating constructive feedback for all stakeholders during a personalised learning process. The dynamic personalised feedback model generates feedback based on the learning objectives for the Learning Object. Feedback can be generated at Learning Object level and the Information Object level for both the individual learner and the group. The group feedback is meant for the tutors and instructional designer to improve the learning process.
Resumo:
Perirhinal cortex in monkeys has been thought to be involved in visual associative learning. The authors examined rats' ability to make associations between visual stimuli in a visual secondary reinforcement task. Rats learned 2-choice visual discriminations for secondary visual reinforcement. They showed significant learning of discriminations before any primary reinforcement. Following bilateral perirhinal cortex lesions, rats continued to learn visual discriminations for visual secondary reinforcement at the same rate as before surgery. Thus, this study does not support a critical role of perirhinal cortex in learning for visual secondary reinforcement. Contrasting this result with other positive results, the authors suggest that the role of perirhinal cortex is in "within-object" associations and that it plays a much lesser role in stimulus-stimulus associations between objects.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.
Resumo:
We studied how the integration of seen and felt tactile stimulation modulates somatosensory processing, and investigated whether visuotactile integration depends on temporal contiguity of stimulation, and its coherence with a pre-existing body representation. During training, participants viewed a rubber hand or a rubber object that was tapped either synchronously with stimulation of their own hand, or in an uncorrelated fashion. In a subsequent test phase, somatosensory event-related potentials (ERPs) were recorded to tactile stimulation of the left or right hand, to assess how tactile processing was affected by previous visuotactile experience during training. An enhanced somatosensory N140 component was elicited after synchronous, compared with uncorrelated, visuotactile training, irrespective of whether participants viewed a rubber hand or rubber object. This early effect of visuotactile integration on somatosensory processing is interpreted as a candidate electrophysiological correlate of the rubber hand illusion that is determined by temporal contiguity, but not by pre-existing body representations. ERPmodulations were observed beyond 200msec post-stimulus, suggesting an attentional bias induced by visuotactile training. These late modulations were absent when the stimulation of a rubber hand and the participant’s own hand was uncorrelated during training, suggesting that pre-existing body representations may affect later stages of tactile processing.
Resumo:
Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.
Resumo:
The ability to change an established stimulus–behavior association based on feedback is critical for adaptive social behaviors. This ability has been examined in reversal learning tasks, where participants first learn a stimulus–response association (e.g., select a particular object to get a reward) and then need to alter their response when reinforcement contingencies change. Although substantial evidence demonstrates that the OFC is a critical region for reversal learning, previous studies have not distinguished reversal learning for emotional associations from neutral associations. The current study examined whether OFC plays similar roles in emotional versus neutral reversal learning. The OFC showed greater activity during reversals of stimulus–outcome associations for negative outcomes than for neutral outcomes. Similar OFC activity was also observed during reversals involving positive outcomes. Furthermore, OFC activity is more inversely correlated with amygdala activity during negative reversals than during neutral reversals. Overall, our results indicate that the OFC is more activated by emotional than neutral reversal learning and that OFC's interactions with the amygdala are greater for negative than neutral reversal learning.
Resumo:
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.