29 resultados para Lead Analysis Data processing
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.
Resumo:
This article analyses the results of an empirical study on the 200 most popular UK-based websites in various sectors of e-commerce services. The study provides empirical evidence on unlawful processing of personal data. It comprises a survey on the methods used to seek and obtain consent to process personal data for direct marketing and advertisement, and a test on the frequency of unsolicited commercial emails (UCE) received by customers as a consequence of their registration and submission of personal information to a website. Part One of the article presents a conceptual and normative account of data protection, with a discussion of the ethical values on which EU data protection law is grounded and an outline of the elements that must be in place to seek and obtain valid consent to process personal data. Part Two discusses the outcomes of the empirical study, which unveils a significant departure between EU legal theory and practice in data protection. Although a wide majority of the websites in the sample (69%) has in place a system to ask separate consent for engaging in marketing activities, it is only 16.2% of them that obtain a consent which is valid under the standards set by EU law. The test with UCE shows that only one out of three websites (30.5%) respects the will of the data subject not to receive commercial communications. It also shows that, when submitting personal data in online transactions, there is a high probability (50%) of incurring in a website that will ignore the refusal of consent and will send UCE. The article concludes that there is severe lack of compliance of UK online service providers with essential requirements of data protection law. In this respect, it suggests that there is inappropriate standard of implementation, information and supervision by the UK authorities, especially in light of the clarifications provided at EU level.
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
Recent developments in the fields of veterinary epidemiology and economics are critically reviewed and assessed. The impacts of recent technological developments in diagnosis, genetic characterisation, data processing and statistical analysis are evaluated. It is concluded that the acquisition and availability of data remains the principal constraint to the application of available techniques in veterinary epidemiology and economics, especially at population level. As more commercial producers use computerised management systems, the availability of data for analysis within herds is improving. However, consistency of recording and diagnosis remains problematic. Recent trends to the development of national livestock databases intended to provide reassurance to consumers of the safety and traceability of livestock products are potentially valuable sources of data that could lead to much more effective application of veterinary epidemiology and economics. These opportunities will be greatly enhanced if data from different sources, such as movement recording, official animal health programmes, quality assurance schemes, production recording and breed societies can be integrated. However, in order to realise such integrated databases, it will be necessary to provide absolute control of user access to guarantee data security and confidentiality. The potential applications of integrated livestock databases in analysis, modelling, decision-support, and providing management information for veterinary services and livestock producers are discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This chapter introduces the latest practices and technologies in the interactive interpretation of environmental data. With environmental data becoming ever larger, more diverse and more complex, there is a need for a new generation of tools that provides new capabilities over and above those of the standard workhorses of science. These new tools aid the scientist in discovering interesting new features (and also problems) in large datasets by allowing the data to be explored interactively using simple, intuitive graphical tools. In this way, new discoveries are made that are commonly missed by automated batch data processing. This chapter discusses the characteristics of environmental science data, common current practice in data analysis and the supporting tools and infrastructure. New approaches are introduced and illustrated from the points of view of both the end user and the underlying technology. We conclude by speculating as to future developments in the field and what must be achieved to fulfil this vision.
Resumo:
Pair Programming is a technique from the software development method eXtreme Programming (XP) whereby two programmers work closely together to develop a piece of software. A similar approach has been used to develop a set of Assessment Learning Objects (ALO). Three members of academic staff have developed a set of ALOs for a total of three different modules (two with overlapping content). In each case a pair programming approach was taken to the development of the ALO. In addition to demonstrating the efficiency of this approach in terms of staff time spent developing the ALOs, a statistical analysis of the outcomes for students who made use of the ALOs is used to demonstrate the effectiveness of the ALOs produced via this method.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
Competency management is a very important part of a well-functioning organisation. Unfortunately competency descriptions are not uniformly specified nor defined across borders: National, sectorial or organisational, leading to an opaque competency description market with a multitude of competency frameworks and competency benchmarks. An ontology is a formalised description of a domain, which enables automated reasoning engines to be built which by utilising the interrelations between entities can make “intelligent” choices in different situations within the domain. Introducing formalised competency ontologies automated tools, such as skill gap analysis, training suggestion generation, job search and recruitment, can be developed, which compare and contrast different competency descriptions on the semantic level. The major problem with defining a common formalised ontology for competencies is that there are so many viewpoints of competencies and competency frameworks. Work within the TRACE project has focused on finding common trends within different competency frameworks in order to allow an intermediate competency description to be made, which other frameworks can reference. This research has shown that competencies can be divided up into “knowledge”, “skills” and what we call “others”. An ontology has been created based on this with a simple structure of different “kinds” of “knowledges” and “skills” using semantic interrelations to define the basic semantic structure of the ontology. A prototype tool for analysing a skill gap analysis has been developed. Personal profiles can be produced using the tool and a skill gap analysis is performed on a desired competency profile by using an ontologically based inference engine, which is able to list closest fit and possible proficiency gaps
Resumo:
Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
In the U.K., dental students require to perform training and practice on real human tissues at the very early stage of their courses. Currently, the human tissues, such as decayed teeth, are mounted in a human head like physical model. The problems with these models in teaching are; (1) every student operates on tooth, which are always unique; (2) the process cannot be recorded for examination purposes and (3) same training are not repeatable. The aim of the PHATOM Project is to develop a dental training system using Haptic technology. This paper documents the project background, specification, research and development of the first prototype system. It also discusses the research in the visual display, haptic devices and haptic rendering. This includes stereo vision, motion parallax, volumetric modelling, surface remapping algorithms as well as analysis design of the system. A new volumetric to surface model transformation algorithm is also introduced. This paper includes the future work on the system development and research.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.