8 resultados para Le Roy, Louis

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

À haute intensité, les deux principales sources d'inconfort physique au travail sont la chaleur et le bruit (Pellerin & Candas, 2003). Même à des intensités modérées et faibles, le bruit affecte les performances cognitives, y compris dans les tâches de bureau courantes, mais il le fait de plusieurs manières différentes selon la nature du bruit (par exemple, discours vs. non-discours, intensité sonore, variabilité et prévisibilité etc.) et le type de tâche dans laquelle l'individu ou le groupe est engagé. Il est un peu surprenant, donc, que les individus expriment souvent une préférence pour travailler dans des conditions de bruit modérées (Schlittmeier & Hellbrück, 2009). Les multiples formes de perturbation auditive nuisant aux performances cognitives sont examinées et comparées avec leurs avantages potentiels dans le cadre du travail, résultant du traitement du bruit de fond en termes de sens du lieu, d'apprentissage fortuit des régularités dans le monde auditif, et de commutation intelligente de l'attention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To effectively prevent the onset and reduce mortality from noncommunicable diseases, we must consider every individual as metabolically unique to allow for a personalized management to take place. Diet and gut microbiota are major components of the exposome that interact together with a genetic make-up in a complex interplay to result in an individual’s metabolic phenotype. In this context, foodomics approaches (such as nutrigenetics, nutrimetabolomics, nutritranscriptomics, nutriproteomics and metagenomics) are essential tools to assess an individual’s optimal metabolic space. These have recently been applied to large human cohorts to identify specific gene-metabolite, diet-metabolite and gene–diet interactions. As the gut microbiota is a key player in metabolic homeostasis, we suggest following a holistic investigation of metagenome–hyperbolome–diet interactions, the findings of which will provide the basis for developing personalized nutrition and personalized functional foods. However, examining these three-way interactions will only be possible when the challenge of large datasets integration will be overcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n=16; <48 y) and elderly (n=33; >65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diar- rhoea, increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no de- finitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challenged with B. pilosicoli strain B2904 with three oral doses two days apart. All birds were colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to ap- proaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the ef- fectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diarrhoea,increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no definitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challengedwith B. pilosicoli strain B2904with three oral doses two days apart. All birdswere colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to approaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the effectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avian intestinal spirochetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally the ileum, caeca and colon), which can cause symptoms such as diarrhoea, reduced growth rate and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summaries the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in inositol auxotrophy that can only be partially rescued by exogenous inositol. Removal of inositol supplementation from the ino1- mutant results in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis and substrate adhesion. Inositol depletion also caused a dramatic generalised decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 independent of inositol biosynthesis. To characterise this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) was identified with homology to mammalian macromolecular complex adaptor proteins. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.