2 resultados para Lattice construction
em CentAUR: Central Archive University of Reading - UK
Resumo:
An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.
Resumo:
Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.