25 resultados para Late Quaternary

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposits of coral-bearing, marine shell conglomerate exposed at elevations higher than 20 m above present-day mean sea level (MSL) in Bermuda and the Bahamas have previously been interpreted as relict intertidal deposits formed during marine isotope stage (MIS) I I, ca. 360-420 ka before present. On the strength of this evidence, a sea level highstand more than 20 m higher than present-day MSL was inferred for the MIS I I interglacial, despite a lack of clear supporting evidence in the oxygen-isotope records of deep-sea sediment cores. We have critically re-examined the elevated marine deposits in Bermuda, and find their geological setting, sedimentary relations, and microfaunal assemblages to be inconsistent with intertidal deposition over an extended period. Rather, these deposits, which comprise a poorly sorted mixture of reef, lagoon and shoreline sediments, appear to have been carried tens of meters inside karst caves, presumably by large waves, at some time earlier than ca. 310-360 ka before present (MIS 9-11). We hypothesize that these deposits are the result of a large tsunami during the mid-Pleistocene, in which Bermuda was impacted by a wave set that carried sediments from the surrounding reef platform and nearshore waters over the eolianite atoll. Likely causes for such a megatsunami are the flank collapse of an Atlantic island volcano, such as the roughly synchronous Julan or Orotava submarine landslides in the Canary Islands, or a giant submarine landslide on the Atlantic continental margin. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our recent paper [McMurtry, G.M., Tappin, D.R., Sedwick, P.N., Wilkinson, I., Fietzkc, J. and Sellwood, B., 2007a. Elevated marine deposits in Bermuda record a late Quaternary megatsunami. Sedimentary Geol. 200, 155-165.] critically re-examined elevated marine deposits in Bermuda, and concluded that their geological setting, sedimentary relations, micropetrography and microfaunal assemblages were inconsistent with sustained intertidal deposition. Instead, we hypothesized that these deposits were the result of a large tsunami that impacted the Bermuda island platform during the mid-Pleistocene. Hearty and Olson [Hearty, P.J., and Olson, S.L., in press. Mega-highstand or megatsunami? Discussion of McMurtry et al. "Elevated marine deposits in Bermuda record a late Quaternary megatsunami": Sedimentary Geology, 200, 155-165, 2007 (Aug. 07). Sedimentary Geol. 200, 155-165.] in their response, attempt to refute our conclusions and claim the deposits to be the result of a +21 m eustatic sea level highstand during marine isotope stage (MIS) 11. In our reply we answer the issues raised by Hearty and Olson [Hearty, P.J., and Olson, S.L., in press. Mega-highstand or megatsunami? Discussion of McMurtry et al. "Elevated marine deposits in Bermuda record a late Quaternary megatsunami": Sedimentary Geology, 200, 155-165, 2007 (Aug. 07). Sedimentary Geol. 200,155-165.] and conclude that the Bermuda deposits do not provide unequivocal evidence of a prolonged +21 m eustatic sea level highstand. Rather, the sediments are more likely the result of a past megatsunami in the North Atlantic basin. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extensive shoreline deposits of Lake Chilwa, southern Malawi, a shallow water body today covering 600 km2 of a basin of 7500 km2, are investigated for their record of late Quaternary highstands. OSL dating, applied to 36 samples from five sediment cores from the northern and western marginal sand ridges, reveal a highstand record spanning 44 ka. Using two different grouping methods, highstand phases are identified at 43.7–33.3 ka, 26.2–21.0 ka and 17.9–12.0 ka (total error method) or 38.4–35.5 ka, 24.3–22.3 ka, 16.2–15.1 ka and 13.5–12.7 ka (Finite Mixture Model age components) with two further discrete events recorded at 11.01 ± 0.76 ka and 8.52 ± 0.56 ka. Highstands are comparable to the timing of wet phases from other basins in East and southern Africa, demonstrating wet conditions in the region before the LGM, which was dry, and a wet Lateglacial, which commenced earlier in the southern compared to northern hemisphere in East Africa. We find no evidence that wet phases are insolation driven, but analysis of the dataset and GCM modelling experiments suggest that Heinrich events may be associated with enhanced monsoon activity in East Africa in both timing and as a possible causal mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kalahari region has become a major source of Quaternary palaeoenvironmental data derived primarily from the analysis of geomorphological proxies of environmental change. One suite of data, from palaeolacustrine landforms, has recently provided a new record of major hydrological changes in the last 150 ka [Burrough, S. L., Thomas, D. S. G., Bailey, R. M., 2009. Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, in press.]. Here we present an improved analysis of the drivers and feedbacks of lake level change, utilising information from three main sources: data from the lake system itself, from analyses of other late Quaternary records within the region and from climate modelling. Simulations using the Hadley Centre coupled climate model, HadCM3, suggest that once triggered, the lake body was large enough to potentially affect both local and regional climates. Surface waters and their interactions with the climate are therefore an important component of environmental dynamics during the late Quaternary. Through its capacity to couple Middle Kalahari environments to distant forcing mechanisms and to itself force environmental change, we demonstrate that the existence or absence of megalake Makgadikgadi adds a new level of complexity to the interpretations of environmental proxy records in southern Africa's summer rainfall zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two previous reconstructions of palaeovegetation across the whole of China were performed using a simple classification of plant functional types (PFTs). Now a more explicit, global PFT classification scheme has been developed, and a substantial number of additional pollen records have become available. Here we apply the global scheme of PFTs to a comprehensive set of pollen records available from China to test the applicability of the global scheme of PFTs in China, and to obtain a well-founded reconstruction of changing palaeovegetation patterns. A total of 806 pollen surface samples, 188 mid-Holocene (MH, 6000 14C yr BP) and 50 last glacial maximum (LGM, 18,000 14C yr BP) pollen records were used to reconstruct vegetation patterns in China, based on a new global classification system of PFTs and a standard numerical technique for biome assignment (biomization). The biome reconstruction based on pollen surface samples showed convincing agreement with present potential natural vegetation. Coherent patterns of change in biome distribution between MH, LGM and present are observed. In the MH, cold and cool-temperate evergreen needleleaf forests and mixed forests, temperate deciduous broadleaf forest, and warm-temperate evergreen broadleaf and mixed forest in eastern China were shifted northward by 200–500 km. Cold-deciduous forest in northeastern China was replaced by cold evergreen needleleaf forest while in central northern China, cold-deciduous forest was present at some sites now occupied by temperate grassland and desert. The forest–grassland boundary was 200–300 km west of its present position. Temperate xerophytic shrubland, temperate grassland and desert covered a large area on the Tibetan Plateau, but the area of tundra was reduced. Treeline was 300–500 m higher than present in Tibet. These changes imply generally warmer winters, longer growing seasons and more precipitation during the MH. Westward shifts of the forest–shrubland–grassland and grassland–desert boundaries imply greater moisture availability in the MH, consistent with a stronger summer monsoon. During the LGM, in contrast, cold-deciduous forest, cool-temperate evergreen needleleaf forest, cool mixed forests, warm-temperate evergreen broadleaf and mixed forest in eastern China were displaced to the south by 300–1000 km, while temperate deciduous broadleaf forest, pure warm-temperate evergreen forest, tropical semi-evergreen and evergreen broadleaf forests were restricted or absent from the mainland of southern China, implying colder winters than present. Strong shifts of temperate xerophytic shrubland, temperate grassland and desert to the south and east in northern and western China and on the Tibetan Plateau imply drier conditions than present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New compilations of African pollen and lake data are compared with climate (CCM1, NCAR, Boulder) and vegetation (BIOME 1.2, GSG, Lund) simulations for the last glacial maximum (LGM) and early to mid-Holocene (EMH). The simulated LGM climate was ca 4°C colder and drier than present, with maximum reduction in precipitation in semi-arid regions. Biome simulations show lowering of montane vegetation belts and expansion of southern xerophytic associations, but no change in the distribution of deserts and tropical rain forests. The lakes show LGM conditions similar or drier than present throughout northern and tropical Africa. Pollen data indicate lowering of montane vegetation belts, the stability of the Sahara, and a reduction of rain forest. The paleoenvironmental data are consistent with the simulated changes in temperature and moisture budgets, although they suggest the climate model underestimates equatorial aridity. EMH simulations show temperatures slightly less than present and increased monsoonal precipitation in the eastern Sahara and East Africa. Biome simulations show an upward shift of montane vegetation belts, fragmentation of xerophytic vegetation in southern Africa, and a major northward shift of the southern margin of the eastern Sahara. The lakes indicate conditions wetter than present across northern Africa. Pollen data show an upward shift of the montane forests, the northward shift of the southern margin of the Sahara, and a major extension of tropical rain forest. The lake and pollen data confirm monsoon expansion in eastern Africa, but the climate model fails to simulate the wet conditions in western Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake records from northern Eurasia show regionally coherent patterns of changes during the late Quaternary. Lakes peripheral to the Scandinavian ice sheet were lower than those today but lakes in the Mediterranean zone were high at the glacial maximum, reflecting the dominance of glacial anticyclonic conditions in northern Europe and a southward shift of the Westerlies. The influence of the glacial anticyclonic circulation attenuated through the late glacial period, and the Westerlies gradually shifted northward, such that drier conditions south of the ice sheet were confined to a progressively narrower zone and the Mediterranean became drier. The early Holocene shows a gradual shift to conditions wetter than present in central Asia, associated with the expanded Asian monsoon, and in the Mediterranean, in response to local, monsoon-type circulation. There is no evidence of mid-continental aridity in northern Eurasia during the mid-Holocene. In contrast, the circum-Baltic region was drier, reflecting the increased incidence of blocking anticyclones centered on Scandinavia in summer. There is a gradual transition to modern conditions after ca. 5000 yr B.P. Although these broad-scale patterns are interrupted by shorter term fluctuations, the long-term trends in lake behavior show a clear response to changes in insolation and glaciation.