37 resultados para Last in last out memory
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three experiments investigated irrelevant sound interference of lip-read lists. In Experiment 1, an acoustically changing sequence of nine irrelevant utterances was more disruptive to spoken immediate identification of lists of nine lip-read digits than nine repetitions of the same utterances (the changing-state effect; Jones, Madden, & Miles, 1992). Experiment 2 replicated this finding when lip-read items were sampled with replacement from the nine digits to form the lip-read lists. In Experiment 3, when the irrelevant sound was confined to the retention interval of a delayed recall task, a changing-state pattern of disruption also occurred. Results confirm a changing-state effect in memory for lip-read items but also point to the possibility that, for lip-reading, changing-state effects may occur at an earlier, perceptual stage.
Resumo:
A 'mapping task' was used to explore the networks available to head teachers, school coordinators and local authority staff. Beginning from an ego-centred perspective on networks, we illustrate a number of key analytic categories, including brokerage, formality, and strength and weakness of links with reference to a single UK primary school. We describe how teachers differentiate between the strength of network links and their value, which is characteristically related to their potential impact on classroom practice.
Resumo:
Emerging evidence suggests that dietary-derived flavonoids have the potential to improve human memory and neuro-cognitive performance via their ability to protect vulnerable neurons, enhance existing neuronal function and stimulate neuronal regeneration. Long-term potentiation (LTP) is widely considered to be one of the major mechanisms underlying memory acquisition, consolidation and storage in the brain and is known to be controlled at the molecular level by the activation of a number of neuronal signalling pathways. These pathways include the phosphatidylinositol-3 kinase/protein kinase B/Akt (Akt), protein kinase C, protein kinase A, Ca-calmodulin kinase and mitogen-activated protein kinase pathways. Growing evidence suggests that flavonoids exert effects on LTP, and consequently memory and cognitive performance, through their interactions with these signalling pathways. Of particular interest is the ability of flavonoids to activate the extracellular signal-regulated kinase and the Akt signalling pathways leading to the activation of the cAMP-response element-binding protein, a transcription factor responsible for increasing the expression of a number of neurotrophins important in LTP and long-term memory. One such neurotrophin is brain-derived neurotrophic factor, which is known to be crucial in controlling synapse growth, in promoting an increase in dendritic spine density and in enhancing synaptic receptor density. The present review explores the potential of flavonoids and their metabolite forms to promote memory and learning through their interactions with neuronal signalling pathways pivotal in controlling LTP and memory in human subjects.
Resumo:
Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway. (c) 2008 Elsevier Inc. All Fights reserved.
Resumo:
As people get older, they tend to remember more positive than negative information. This age-by-valence interaction has been called “positivity effect.” The current study addressed the hypotheses that baseline functional connectivity at rest is predictive of older adults' brain activity when learning emotional information and their positivity effect in memory. Using fMRI, we examined the relationship among resting-state functional connectivity, subsequent brain activity when learning emotional faces, and individual differences in the positivity effect (the relative tendency to remember faces expressing positive vs. negative emotions). Consistent with our hypothesis, older adults with a stronger positivity effect had increased functional coupling between amygdala and medial PFC (MPFC) during rest. In contrast, younger adults did not show the association between resting connectivity and memory positivity. A similar age-by-memory positivity interaction was also found when learning emotional faces. That is, memory positivity in older adults was associated with (a) enhanced MPFC activity when learning emotional faces and (b) increased negative functional coupling between amygdala and MPFC when learning negative faces. In contrast, memory positivity in younger adults was related to neither enhanced MPFC activity to emotional faces, nor MPFC–amygdala connectivity to negative faces. Furthermore, stronger MPFC–amygdala connectivity during rest was predictive of subsequent greater MPFC activity when learning emotional faces. Thus, emotion–memory interaction in older adults depends not only on the task-related brain activity but also on the baseline functional connectivity.
Resumo:
Arousal sometimes enhances and sometimes impairs perception and memory. In our Glutamate Amplifies Noradrenergic Effects (GANE) model, glutamate at active synapses interacts with norepinephrine released by the locus coeruleus to create local ‘hot spots’ of activity that enable the selective effects of arousal. This hot spot mechanism allows local cortical regions to self-regulate norepinephrine release based on current activation levels. In turn, hot spots bias global energetic delivery and functional network connectivity to enhance processing of high priority representations and impair processing of lower priority representations.
Resumo:
Findings from animal studies suggest that components of fruit and vegetables (F&V) may protect against, and even reverse, age-related decline(1,2) in aspects of cognitive functioning such as spatial working memory (SWM). Human subjects in vivo and in vitro studies indicate that anti-inflammatory, anti-oxidant and cell-signalling properties of flavonoids and carotenoids, non-nutrient components of F&V, may underpin this protective effect(3–5). The Flavonoid University of Reading Study (FLAVURS), designed to explore the dose-response relationship between dietary F&V flavonoids and CVD, enabled the investigation of such an association with SWM. FLAVURS is an 18-week parallel three-arm randomised controlled dietary intervention trial with four time points, measured at 6-weekly intervals from baseline. Low F&V consumers at risk of CVD aged 26–70 years were randomly assigned to high flavonoid (HF), low flavonoid (LF) or control group. F&V intake increased by two daily 80 g portions every 6 weeks, with either HF or LF F&V, in addition to each participant's habitual diet, while controls maintained their habitual diet. At each visit, participants completed a cognitive test battery with SWM as the primary outcome. The HF group showed significantly higher levels of urinary flavonoids than LF or controls at 12 weeks (P<0.001) as expected, but surprisingly only higher levels than LF at 18 weeks (P<0.01). The LF group showed higher levels of plasma carotenoids than the other groups at 18 weeks (P<0.001). No group differences were found for SWM overall, however, age-group sub-analyses (26–50 and 51–70 years of age) showed differences from 0 to 18 weeks for younger adults, with LF improving significantly more than the other two groups on SWM (P<0.05). As nutritional absorption is known to decrease with age, separate stepwise regressions were performed on the two age groups irrespective of dietary group, with urinary flavonoids and plasma carotenoids as predictors. For younger adults, improved SWM performance from 0 to 18 weeks was associated with higher carotenoid levels, β=0.28, t(55)=2.10, P<0.05, accounting for 7.5% of the variance, R2=0.075, F(1,54)=4.41, P=0.040. For older adults, no between-group SWM differences were found. Findings suggest that F&V-based flavonoids and carotenoids may provide benefits for cognitive function, and that carotenoids in particular may improve cognitive performance in SWM. Given that these benefits were restricted to younger adults, future work is needed to test the reliability of this finding, as well as determine the mechanisms by which age-dependent differences in F&V responsiveness occur.
Resumo:
The relationship between working memory (WM) and attention is a highly interdependent one, with evidence that attention determines the state in which items in WM are retained. Through focusing of attention, an item might be held in a more prioritized state, commonly termed as the focus of attention (FOA). The remaining items, although still retrievable, are considered to be in a different representational state. One means to bring an item into the FOA is to use retrospective cues (‘retro-cues’) which direct attention to one of the objects retained in WM. Alternatively, an item can enter a privileged state once attention is directed towards it through bottom-up influences (e.g. recency effect) or by performing an action on one of the retained items (‘incidental’ cueing). In all these cases, the item in the FOA is recalled with better accuracy compared to the other items in WM. Far less is known about the nature of the other items in WM and whether they can be flexibly manipulated in and out of the FOA. We present data from three types of experiments as well as transcranial magnetic stimulation to early visual cortex to manipulate the item inside FOA. Taken together, our results suggest that the context in which items are retained in WM matters. When an item remains behaviourally relevant, despite not being inside the FOA, re-focusing attention upon it can increase its recall precision. This suggests that a non-FOA item can be held in a state in which it can be later retrieved. However, if an item is rendered behaviourally unimportant because it is very unlikely to be probed, it cannot be brought back into the FOA, nor recalled with high precision. Under such conditions, some information appears to be irretrievably lost from WM. These findings, obtained from several different methods, demonstrate quite considerable flexibility with which items in WM can be represented depending upon context. They have important consequences for emerging state-dependent models of WM.
Resumo:
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.
Resumo:
The effect of long-term knowledge upon performance in short-term memory tasks was examined for children from 5 to 10 years of age. The emergence of a lexicality effect, in which familiar words were recalled more accurately than unfamiliar words, was found to depend upon the nature of the memory task. Lexicality effects were interpreted as reflecting the use of redintegration, or reconstruction processes, in short-term memory. Redintegration increased with age for tasks requiring spoken item recall and decreased with age when position information but not naming was required. In a second experiment, redintegration was found in a recognition task when some of the foils rhymed with the target. Older children were able to profit from a rhyming foil, whereas younger children were confused by it, suggesting that the older children make use of sublexical phonological information in reconstructing the target. It was proposed that redintegrative processes in their mature form support the reconstruction of detailed phonological knowledge of words.
Resumo:
The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health.
Resumo:
Objective. Numerous studies have reported elevated levels of overgeneral autobiographical memory among depressed patients and also among those previously exposed to a traumatic event. No previous study has examined their joint association with overgeneral memory in a community sample, nor examined whether the associations are with both juvenile- and adult-onset depression. Methods. The current study examined the relative importance of exposure to childhood abuse and neglect in overgeneral memory of women with and without a history of major depressive disorder (MDD). Autobiographical memory test together with standardized interviews of childhood experiences and MDD were assessed in a risk-stratified community sample of 103 women aged 25–37. Results. Overgenerality in memory was associated with recalled childhood sexual abuse (CSA) but not other adversities. A history of CSA was predictive of overgeneral memory bias even in the absence of MDD. Our analyses indicated no significant association between a history of MDD and overgeneral memory in women who reported no CSA. However, overgeneral memory was increased in women who reported CSA and MDD with a significant difference found in relation to positive cues, the highest scores being seen among those with adult rather than juvenile-onset depression. Conclusions. The findings highlight the significance of CSA in predicting overgeneral memory, differential response in relation to positive and negative cue memories, and point to a specific role in the development of depression for overgeneral memory following CSA.
Resumo:
Ecological risk assessments must increasingly consider the effects of chemical mixtures on the environment as anthropogenic pollution continues to grow in complexity. Yet testing every possible mixture combination is impractical and unfeasible; thus, there is an urgent need for models that can accurately predict mixture toxicity from single-compound data. Currently, two models are frequently used to predict mixture toxicity from single-compound data: Concentration addition and independent action (IA). The accuracy of the predictions generated by these models is currently debated and needs to be resolved before their use in risk assessments can be fully justified. The present study addresses this issue by determining whether the IA model adequately described the toxicity of binary mixtures of five pesticides and other environmental contaminants (cadmium, chlorpyrifos, diuron, nickel, and prochloraz) each with dissimilar modes of action on the reproduction of the nematode Caenorhabditis elegans. In three out of 10 cases, the IA model failed to describe mixture toxicity adequately with significant or antagonism being observed. In a further three cases, there was an indication of synergy, antagonism, and effect-level-dependent deviations, respectively, but these were not statistically significant. The extent of the significant deviations that were found varied, but all were such that the predicted percentage effect seen on reproductive output would have been wrong by 18 to 35% (i.e., the effect concentration expected to cause a 50% effect led to an 85% effect). The presence of such a high number and variety of deviations has important implications for the use of existing mixture toxicity models for risk assessments, especially where all or part of the deviation is synergistic.