7 resultados para Laser Produced Plasma
em CentAUR: Central Archive University of Reading - UK
Resumo:
Coral growth rate can be affected by environmental parameters such as seawater temperature, depth, and light intensity. The natural reef environment is also disturbed by human influences such as anthropogenic pollutants, which in Barbados are released close to the reefs. Here we describe a relatively new method of assessing the history of pollution and explain how these effects have influenced the coral communities off the west coast of Barbados. We evaluate the relative impact of both anthropogenic pollutants and natural stresses. Sclerochronology documents framework and skeletal growth rate and records pollution history (recorded as reduced growth) for a suite of sampled Montastraea annularis coral cores. X-radiography shows annual growth band patterns of the corals extending back over several decades and indicates significantly lower growth rate in polluted sites. Results using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the whole sample (aragonite, organic matter, trapped particulate matter, etc.), have shown contrasting concentrations of the trace elements (Cu, Sn, Zn, and Pb) between corals at different locations and within a single coral. Deepwater corals 7 km apart, record different levels of Pb and Sn, suggesting that a current transported the metal pollution in the water. In addition, the 1995 hurricanes are associated with anomalous values for Sn and Cu from most sites. These are believed to result from dispersion of nearshore polluted water. We compared the concentrations of trace elements in the coral growth of particular years to those in the relevant contemporaneous seawater. Mean values for the concentration factor in the coral, relative to the water, ranged from 10 for Cu and Ni to 2.4 and 0.7 for Cd and Zn, respectively. Although the uncertainties are large (60-80%), the coral record enabled us to demonstrate the possibility of calculating a history of seawater pollution for these elements from the 1940s to 1997. Our values were much higher than those obtained from analysis of carefully cleaned coral aragonite; they demonstrate the incorporation of more contamination including that from particulate material as well as dissolved metals.
Resumo:
A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.
Resumo:
Background: Inadvertent drilling on the ossicular chain is one of the causes of sensorineural hearing loss (HL) that may follow tympanomastoid surgery. A high-frequency HL is most frequently observed. It is speculated that the HL is a result of vibration of the ossicular chain resembling acoustic noise trauma. It is generally considered that using a large cutting burr is more likely to cause damage than a small diamond burr. Aim: The aim was to investigate the equivalent noise level and its frequency characteristics generated by drilling onto the short process of the incus in fresh human temporal bones. Methods and Materials: Five fresh cadaveric temporal bones were used. Stapes displacement was measured using laser Doppler vibrometry during short drilling episodes. Diamond. and cutting burrs of different diameters were used. The effect of the drilling on stapes footplate displacement was compared with that generated by an acoustic signal. The equivalent noise level (dB sound pressure level equivalent [SPL eq]) was thus calculated. Results: The equivalent noise levels generated ranged from 93 to 125 dB SPL eq. For a 1-mm cutting burr, the highest equivalent noise level was 108 dB SPL eq, whereas a 2.3-mm cutting burr produced a maximal level of 125 dB SPL eq. Diamond burrs generated less noise than their cutting counterparts, with a 2.3-mm diamond burr producing a highest equivalent noise level of 102, dB SPL eq. The energy of the noise increased at the higher end of the frequency spectrum, with a 2.3-mm cutting burr producing a noise level of 105 dB SPL eq at 1 kHz and 125 dB SPL eq at 8 kHz. In contrast, the same sized diamond burr produced 96 dB SPL eq at 1 kHz and 99 dB at 8 kHz. Conclusion:This study suggests that drilling on the ossicular chain can produce vibratory force that is analogous with noise levels known to produce acoustic trauma. For the same type of burr, the larger the diameter, the greater the vibratory force, and for the same size of burr, the cutting burr creates more vibratory force than the diamond burr. The cutting burr produces greater high-frequency than lower-frequency vibratory energy.
Resumo:
The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.
Resumo:
Background: Fruit and vegetable-rich diets are associated with a reduced cardiovascular disease (CVD) risk. This protective effect may be a result of the phytochemicals present within fruits and vegetables (F&V). However, there can be considerable variation in the content of phytochemical composition of whole F&V depending on growing location, cultivar, season and agricultural practices, etc. Therefore, the present study investigated the effects of consuming fruits and vegetables as puree-based drinks (FVPD) daily on vasodilation, phytochemical bioavailability, antioxidant status and other CVD risk factors. FVPD was chosen to provide a standardised source of F&V material that could be delivered from the same batch to all subjects during each treatment arm of the study. Methods: Thirty-nine subjects completed the randomised, controlled, cross-over dietary intervention. Subjects were randomised to consume 200 mL of FVPD (or fruit-flavoured control), daily for 6 weeks with an 8-week washout period between treatments. Dietary intake was measured using two 5-day diet records during each cross-over arm of the study. Blood and urine samples were collected before and after each intervention and vasodilation assessed in 19 subjects using laser Doppler imaging with iontophoresis. Results: FVPD significantly increased dietary vitamin C and carotenoids (P < 0.001), and concomitantly increased plasma α- and β-carotene (P < 0.001) with a near-significant increase in endothelium-dependent vasodilation (P = 0.060). Conclusions: Overall, the findings obtained in the present study showed that FVPD were a useful vehicle to increase fruit and vegetable intake, significantly increasing dietary and plasma phytochemical concentrations with a trend towards increased endothelium-dependent vasodilation.
Resumo:
Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the “Polar” experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength of the IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes.