86 resultados para Lane

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the far road and near road mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to 55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between 10 and 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at 1 and 5 cm depth and stream water, and weaker correlations between concentrations at 20 to 50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <12 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will always be well correlated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42) dynamics under drought conditions has been revealed from analysis of a 10-year time series (19932002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42 during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.