95 resultados para Landscape variables
em CentAUR: Central Archive University of Reading - UK
Resumo:
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.
Resumo:
The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.
Resumo:
Purpose The research objective of this study is to understand how institutional changes to the EU regulatory landscape may affect corresponding institutionalized operational practices within financial organizations. Design/methodology/approach The study adopts an Investment Management System as its case and investigates different implementations of this system within eight financial organizations, predominantly focused on investment banking and asset management activities within capital markets. At the systems vendor site, senior systems consultants and client relationship managers were interviewed. Within the financial organizations, compliance, risk and systems experts were interviewed. Findings The study empirically tests modes of institutional change. Displacement and Layering were found to be the most prevalent modes. However, the study highlights how the outcomes of Displacement and Drift may be similar in effect as both modes may cause compliance gaps. The research highlights how changes in regulations may create gaps in systems and processes which, in the short term, need to be plugged by manual processes. Practical implications Vendors abilities to manage institutional change caused by Drift, Displacement, Layering and Conversion and their ability to efficiently and quickly translate institutional variables into structured systems has the power to ease the pain and cost of compliance as well as reducing the risk of breeches by reducing the need for interim manual systems. Originality/value The study makes a contribution by applying recent theoretical concepts of institutional change to the topic of regulatory change uses this analysis to provide insight into the effects of this new environment
Resumo:
Landscape scale habitat restoration has the potential to reconnect habitats in fragmented landscapes. This study investigates landscape connectivity as a key to effective habitat restoration in lowland agricultural landscapes and applies these findings to transferable management recommendations. The study area is the Stonehenge World Heritage Site, UK, where landscape scale chalk grassland restoration has been implemented. Here, the ecological benefits of landscape restoration and the species, habitat and landscape characteristics that facilitate or impede the enhancement of biodiversity and landscape connectivity were investigated. Lepidoptera were used as indictors of restoration success and results showed restoration grasslands approaching the ecological conditions of the target chalk grassland habitat and increasing in biodiversity values within a decade. Restoration success is apparent for four species with a broad range of grass larval host plants (e.g. Melanargia galathea, Maniola jurtina) or with intermediate mobility (Polyommatus icarus). However, two species with specialist larval host plants and low mobility (Lysandra bellargus), are restricted to chalk grassland fragments. Studies of restoration grassland of different ages show that recent grassland restoration (1 or 2 years old) may reduce the functional isolation of chalk grassland fragments. A management experiment showed that mowing increases boundary following behaviour in two species of grassland Lepidoptera; Maniola jurtina and Zygaena filipendulae. Analysis of the landscape scale implications of the grassland restoration illustrates an increase in grassland habitat network size and in landscape connectivity, which is likely to benefit the majority of grassland associated Lepidoptera. Landscape and habitat variables can be managed to increase the success of restoration projects including the spatial targeting of receptor sites, vegetation structure and selection of seed source and management recommendations are provided that are transferrable to other species-rich grassland landscape scale restoration projects. Overall results show restoration success for some habitats and species within a decade. However, additional management is required to assist the re-colonisation of specialist species. Despite this, habitat restoration at the landscape scale can be an effective, long term approach to enhance butterfly biodiversity and landscape connectivity.
Resumo:
Context Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations. Objective To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important for maintaining diverse populations in wooded-agricultural environments. Methods Birds were sampled from woodlands in 58 2 x 2 km tetrads across southern Britain. Landscape heterogeneity was quantified for each tetrad. Bird assemblage response was determined using redundancy analysis combined with variation partitioning and response trait analyses. Results For woodland bird assemblages, the independent explanatory importance of landscape composition and landscape configuration variables were closely interrelated. When considered simultaneously during variation partitioning, the community response was better represented by compositional variables. Different species responded to different landscape features and this could be explained by traits relating to woodland association, foraging strata and nest location. Ubiquitous, generalist species, many of which were hole-nesters or ground foragers, correlated positively with urban landcover while specialists of broadleaved woodland avoided landscapes containing urban areas. Species typical of coniferous woodland correlated with large conifer plantations. Conclusions At the 2 x 2 km scale, there was evidence that the availability of resources provided by proximate landcover types was highly important for shaping woodland bird assemblages. Further research to disentangle the effects of composition and configuration at different spatial scales is advocated.
Resumo:
This paper examines the landscape context of the Bartlow Hills, a group of large Romano-British barrows that were excavated in the 1840s but have been largely neglected since. GIS is employed to test whether it was possible to view the mounds from nearby roads, barrows and villas. Existing research on provincial barrows, and especially their landscape context, and some recent relevant applications of GIS are reviewed. We argue that barrows are active and symbolically charged statements about power and identity. The most striking pattern to emerge from the GIS analysis is a focus on display to a local rather than a transient audience.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.