109 resultados para Land use and cover change models
em CentAUR: Central Archive University of Reading - UK
Resumo:
Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.
Resumo:
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.
Resumo:
Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
The fate of biodiversity is intimately linked to agricultural development. Policy reform is an important driver of changes in agricultural land-use, but there is considerable spatial variation in response to policy and its potential impact on biodiversity. We review the links between policy, land-use and biodiversity and advocate a more integrated approach. Ecologists need to recognize that wildlife-friendly farming is not the only land-use strategy that can be used to conserve biodiversity and to research alternative options such as land sparing. There is also a need for social scientists and ecologists to bring their approaches together, so that land-use change and its consequences can be investigated in a more holistic way.
Resumo:
The 2003 reform of the European Union's (EU) Common Agricultural Policy introduced a decoupled income support for farmers called the Single Farm Payment (SFP). Concerns were raised about possible future land use and production changes and their impact on rural communities. Here, such concerns are considered against the workings of the SFP in three EU Member States. Various quantitative studies that have determined the likely impact of the SFP within the EU and the study countries are reviewed. We present the results of a farm survey conducted in the study countries in which farmers' responses to a decoupling scenario similar to the SFP were sought. We found that little short-term change was proposed in the three, rather different, study countries with only 30% of the farmers stating that they would alter their mix of farm activities. Furthermore, less than 30% of all respondents in each country would idle any land under decoupling. Of those who would adopt a new activity, the most popular choices were forestry, woodland and non-food crops. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The EU has adopted the European Farmland Bird Index (EFBI) as a Structural and Sustainable Development Indicator and a proxy for wider biodiversity health on farmland. Changes in the EFBI over coming years are likely to reflect how well agri-environment schemes (AES), funded under Pillar 2 (Axis 2) of the Common Agricultural Policy, have been able to offset the detrimental impacts of past agricultural changes and deliver appropriate hazard prevention or risk mitigation strategies alongside current and future agricultural change. The delivery of a stable or positive trend in the EFBI will depend on the provision of sufficient funding to appropriately designed and implemented AES. We present a trait-based framework which can be used to quantify the detrimental impact of land-use change on farmland bird populations across Europe. We use the framework to show that changes in resource availability within the cropped area of agricultural landscapes have been the key driver of current declines in farmland bird populations. We assess the relative contribution of each Member State to the level of the EFBI and explore the relationship between risk contribution and Axis 2 funding allocation. Our results suggest that agricultural changes in each Member State do not have an equal impact on the EFBI, with land-use and management change in Spain having a particularly large influence on its level, and that funding is poorly targeted with respect to biodiversity conservation needs. We also use the framework to predict the EFBI in 2020 for a number of land-use change scenarios. This approach can be used to guide both the development and implementation of targeted AES and the objective distribution of Pillar 2 funds between and within Member States. We hope that this will contribute to the cost-effective and efficient delivery of Rural Development strategy and biodiversity conservation targets.
Resumo:
The assessment of the potential landscape impacts of the latest Common Agricultural Policy reforms constitutes a challenge for policy makers and it requires the development of models that can reliably project the likely spatial distribution of land uses. The aim of this study is to investigate the impact of 2003 CAP reforms to land uses and rural landscapes across England. For this purpose we modified an existing economic model of agriculture, the Land-Use Allocation Model (LUAM) to provide outputs at a scale appropriate for informing a semi-quantitative landscape assessment at the level of ‘Joint Character Areas’ (JCAs). Overall a decline in the cereal and oilseed production area is projected but intensive arable production will persist in specific locations (East of England, East Midlands and South East), having ongoing negative effects on the character of many JCAs. The impacts of de-coupling will be far more profound on the livestock sector; extensification of production will occur in traditional mixed farming regions (e.g. the South West), a partial displacement of cattle by sheep in the upland regions and an increase in the sheep numbers is expected in the lowlands (South East, Eastern and East Midlands). This extensification process will affect positively those JCAs of mixed farming conditions, but it will have negative impacts on the JCAs of historically low intensity farming (e.g. the uplands of north-west) because they will suffer from under-management and land idling. Our analysis shows that the territorialisation between intensively and extensively agricultural landscapes will continue.
Resumo:
The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.
Resumo:
Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets d6pends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have notyet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or largescale changes in land use.
Resumo:
Declining biodiversity in agro-ecosystems, caused by intensification of production or expansion of monocultures, is associated with the emergence of agricultural pests. Understanding how land-use and management control crop-associated biodiversity is, therefore, one of the key steps towards the prediction and maintenance of natural pest-control. Here we report on relationships between land-use variables and arthropod community attributes (for example, species diversity, abundance and guild structure) across a diversification gradient in a rice-dominated landscape in the Mekong delta, Vietnam. We show that rice habitats contained the most diverse arthropod communities, compared with other uncultivated and cultivated land-use types. In addition, arthropod species density and Simpson's diversity in flower, vegetable and fruit habitats was positively related to rice cover in the local landscape. However, across the landscape as a whole, reduction in heterogeneity and the amount of uncultivated cover was associated, generally, with a loss of diversity. Furthermore, arthropod species density in tillering and flowering stages of rice was positively related to crop and vegetation richness, respectively, in the local landscape. Differential effects on feeding guilds were also observed in rice-associated communities with the proportional abundance of predators increasing and the proportional abundance of detritivores decreasing with increased landscape rice cover. Thus, we identify a range of rather complex, sometimes contradictory patterns concerning the impact of rice cover and landscape heterogeneity on arthropod community attributes. Importantly, we conclude that that land-use change associated with expansion of monoculture rice need not automatically impact diversity and functioning of the arthropod community.