24 resultados para Lagrangian bounds in optimization problems
em CentAUR: Central Archive University of Reading - UK
Resumo:
Quasi-Newton-Raphson minimization and conjugate gradient minimization have been used to solve the crystal structures of famotidine form B and capsaicin from X-ray powder diffraction data and characterize the chi(2) agreement surfaces. One million quasi-Newton-Raphson minimizations found the famotidine global minimum with a frequency of ca 1 in 5000 and the capsaicin global minimum with a frequency of ca 1 in 10 000. These results, which are corroborated by conjugate gradient minimization, demonstrate the existence of numerous pathways from some of the highest points on these chi(2) agreement surfaces to the respective global minima, which are passable using only downhill moves. This important observation has significant ramifications for the development of improved structure determination algorithms.
Resumo:
We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$-error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.
Resumo:
We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.
Resumo:
A study is made of the zonal-mean motions induced by a growing baroclinic wave in several contexts, under the framework of three different analysis schemes: the conventional Eulerian mean (EM), the transformed Eulerian mean (TEM), and the generalized Lagrangian mean (GLM). The effect of meridional shear in the initial jet on these induced mean motions is considered by treating the instability problem in the context of the two-layer model. The conceptual simplicity of the TEM formulation is shown to be useful in diagnosing the dynamics of instability, much as it has been found helpful in many problems of wave, mean-flow interaction. In addition, it is found that the TEM vertical velocity is a very good indicator of the GLM vertical velocity. However, the GLM meridional velocity is always convergent towards the centre of instability activity, and is not at all well represented by the nondivergent TEM meridional velocity. In comparing the results with Uryu's (1979) calculation of the GLM circulation induced by a growing Eady wave, it is found that the inclusion of meridional jet shear in the present work leads to some strikingly different effects in the GLM zonal wind acceleration. In the case of pure baroclinic instability treated by Uryu, the Eulerian and Stokes accelerations nearly cancel each other in the centre of the channel, leaving a weak Lagrangian acceleration opposed to the Eulerian one. In the more general case of mixed baroclinic-barotropic instability, however, the Eulerian and Stokes accelerations can reinforce one another, leading to a very strong Lagrangian zonal wind
Resumo:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.
Resumo:
Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
Background: Some contend that attachment insecurity increases risk for the development of externalizing behavior problems in children. Method: Latent-growth curve analyses were applied to data on 1,364 children from the NICHD Study of Early Child Care to evaluate the association between early attachment and teacher-rated externalizing problems across the primary-school years. Results: Findings indicate that (a) both avoidant and disorganized attachment predict higher levels of externalizing problems but (b) that effects of disorganized attachment are moderated by family cumulative contextual risk, child gender and child age, with disorganized boys from risky social contexts manifesting increases in behavior problems over time. Conclusions: These findings highlight the potentially conditional role of early attachment in children’s externalizing behavior problems and the need for further research evaluating causation and mediating mechanisms.
Resumo:
In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.
Resumo:
In the stratosphere, chemical tracers are drawn systematically from the equator to the pole. This observed Brewer–Dobson circulation is driven by wave drag, which in the stratosphere arises mainly from the breaking and dissipation of planetary-scale Rossby waves. While the overall sense of the circulation follows from fundamental physical principles, a quantitative theoretical understanding of the connection between wave drag and Lagrangian transport is limited to linear, small-amplitude waves. However, planetary waves in the stratosphere generally grow to a large amplitude and break in a strongly nonlinear fashion. This paper addresses the connection between stratospheric wave drag and Lagrangian transport in the presence of strong nonlinearity, using a mechanistic three-dimensional primitive equations model together with offline particle advection. Attention is deliberately focused on a weak forcing regime, such that sudden warmings do not occur and a quasi-steady state is reached, in order to examine this question in the cleanest possible context. Wave drag is directly linked to the transformed Eulerian mean (TEM) circulation, which is often used as a surrogate for mean Lagrangian motion. The results show that the correspondence between the TEM and mean Lagrangian velocities is quantitatively excellent in regions of linear, nonbreaking waves (i.e., outside the surf zone), where streamlines are not closed. Within the surf zone, where streamlines are closed and meridional particle displacements are large, the agreement between the vertical components of the two velocity fields is still remarkably good, especially wherever particle paths are coherent so that diabatic dispersion is minimized. However, in this region the meridional mean Lagrangian velocity bears little relation to the meridional TEM velocity, and reflects more the kinematics of mixing within and across the edges of the surf zone. The results from the mechanistic model are compared with those from the Canadian Middle Atmosphere Model to test the robustness of the conclusions.
Resumo:
The no response test is a new scheme in inverse problems for partial differential equations which was recently proposed in [D. R. Luke and R. Potthast, SIAM J. Appl. Math., 63 (2003), pp. 1292–1312] in the framework of inverse acoustic scattering problems. The main idea of the scheme is to construct special probing waves which are small on some test domain. Then the response for these waves is constructed. If the response is small, the unknown object is assumed to be a subset of the test domain. The response is constructed from one, several, or many particular solutions of the problem under consideration. In this paper, we investigate the convergence of the no response test for the reconstruction information about inclusions D from the Cauchy values of solutions to the Helmholtz equation on an outer surface $\partial\Omega$ with $\overline{D} \subset \Omega$. We show that the one‐wave no response test provides a criterion to test the analytic extensibility of a field. In particular, we investigate the construction of approximations for the set of singular points $N(u)$ of the total fields u from one given pair of Cauchy data. Thus, the no response test solves a particular version of the classical Cauchy problem. Also, if an infinite number of fields is given, we prove that a multifield version of the no response test reconstructs the unknown inclusion D. This is the first convergence analysis which could be achieved for the no response test.
Resumo:
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A ‘range test’ for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533–547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhäuser, Basel, 1986, pp. 93–102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Göttingen, 1999]. In particular, we propose a new version of the Kirsch–Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.