16 resultados para LOW-BANDGAP POLYMER

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

New experiments underpin the interpretation of the basic division in crystallization behaviour of polyethylene in terms of whether or not there is time for the fold surface to order before the next molecular layer is added at the growth front. For typical growth rates, in Regime 11, polyethylene lamellae form with disordered {001} fold surfaces then transform, with lamellar thickening and twisting, towards the more-ordered condition found for slower crystallization in Regime 1, in which lamellae form with and retain {201} fold surfaces. Several linear and linear-low-density polyethylenes have been used to show that, for the same polymer crystallized alone or in a blend, the growth rate at which the change in initial lamellar condition occurs is reasonably constant thereby supporting the concept of a specific time for surfaces to attain the ordered {201}) state. This specific time, in the range from milliseconds to seconds, increases with molecular length, and in linear-low-density polymer, for higher branch contents. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rubber composites containing multiwalled carbon nanotubes have been irradiated with near-infrared light to study their reversible photomechanical actuation response. We demonstrate that the actuation is reproducible across differing polymer systems. The response is directly related to the degree of uniaxial alignment of the nanotubes in the matrix, contracting the samples along the alignment axis. The actuation stroke depends on the specific polymer being tested; however, the general response is universal for all composites tested. We conduct a detailed study of tube alignment induced by stress and propose a model for the reversible actuation behavior based on the orientational averaging of the local response. The single phenomenological parameter of this model describes the response of an individual tube to adsorption of low-energy photons; its experimentally determined value may suggest some ideas about such a response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilising supramolecular pi-pi stacking interactions to drive miscibility in two-component polymer blends offers a novel approach to producing materials with unique properties. We report in this paper the preparation of a supramolecular polymer network that exploits this principle. A low molecular weight polydiimide which contains multiple pi-electron-poor receptor sites along its backbone forms homogeneous films with a siloxane polymer that features pi-electron-rich pyrenyl end-groups. Compatibility results from a complexation process that involves chain-folding of the polydiimide to create an optimum binding site for the pi-electron-rich chain ends of the polysiloxane. These complementary pi-electron-rich and -poor receptors exhibit rapid and reversible complexation behaviour in solution, and healable characteristics in the solid state in response to temperature. A mechanism is proposed for this thermoreversible healing behaviour that involves disruption of the intermolecular pi-pi stacking cross-links as the temperature of the supramolecular film is increased. The low T-g siloxane component can then flow and as the temperature of the blend is decreased, pi-pi stacking interactions drive formation of a new network and so lead to good damage-recovery characteristics of the two-component blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel 'tweezer-type' complexes that exploit the interactions between pi-electron-rich pyrenyl groups and pi-electron deficient diimide units have been designed and synthesised. The component molecules leading to complex formation were accessed readily from commercially available starting materials through short and efficient syntheses. Analysis of the resulting complexes, using the visible charge-transfer band, revealed association constants that increased sequentially from 130 to 11,000 M-1 as increasing numbers of pi-pi-stacking interactions were introduced into the systems. Computational modelling was used to analyse the structures of these complexes, revealing low-energy chain-folded conformations for both components, which readily allow close, multiple pi-pi-stacking and hydrogen bonding to be achieved. In this paper, we give details of our initial studies of these complexes and outline how their behaviour could provide a basis for designing self-healing polymer blends for use in adaptive coating systems. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbons have been prepared by the low-temperature pyrolysis, under argon, of a number of long-chain polymers. We have found that the resistivity (Omega cm(-1)) varies considerably with the temperature of pyrolysis; thus, for ammonium polyacrylate, the resistivity of that pyrolyzed at 600 degrees C is 9.7 x 10(4) Omega cm(-1) whereas that pyrolyzed at 1000 degrees C is ca. 3 Omega cm(-1). A similar situation arises for the other polymers studied (including radiolyzed cross-linked polyacrylamide). All those pyrolyzed at 600 degrees C had a resistivity of > 1 x 10(6) Omega cm(-1), whereas those pyrolyzed at 1000 degrees C had a resistivity of ca. 3-5 Omega cm(-1). A notable exception was that of unirradiated polyacrylamide, where the resistivity remained at > 1 x 10(6) Omega cm(-1) over the range of temperatures studied. The decrease of resistivity with increase of temperature of pyrolysis has been related to the formation of glassy carbon. Nanoparticles (4 nm) of tetragonal zirconia were formed when zirconium polyacrylate was pyrolyzed under similar conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison is made of the development of global orientation during shearing of lyotropic solutions of hydroxypropylcellulose with that observed for the thermotropic phase of hydroxypropylcellulose. At shear rates the behaviour of the two systems is similar, both during steady-state shear, and in terms of relaxation following cessation of shear flow. At low shear rates, the levels of orientation observed for the thermotropic system are substantially greater than observed for the lyotropic solutions. The relationship of these differences to variations in molecular parameters, viscous stress and to director tumbling is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrospinning of urethane based low molecular weight polymers differing only in the nature of the hydrogen bonding end-groups has been investigated. For the end-groups with the lowest binding constants at maximum solubility only droplets, are produced at the electrode; in contrast, increasing the binding constant of the end-group results in electrospun fibres being produced. The properties of the fibres produced are subject to changes in solvent, concentration and temperature. Typical diameters for these fibres were found to be some 10 s of μm, rather than the sub-micron dimensions often produced in electrospinning systems. Such diameters are related to the high initial concentrations required; this also may influence the rate of solvent removal and preferential surface solidification which feature in these examples. A simple theoretical model is used to relate the association constant to the molecular weight required for fibre formation; significantly lower levels of association are required for higher molecular weight macromonomers compared to smaller molecular systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The starchy endosperm is the major storage tissue in the mature wheat grain and exhibits quantitative and qualitative gradients in composition, with the outermost cell layers being rich in protein, mainly gliadins, and the inner cells being low in protein but enriched in high-molecular-weight (HMW) subunits of glutenin. We have used sequential pearling to produce flour fractions enriched in particular cell layers to determine the protein gradients in four different cultivars grown at two nitrogen levels. The results show that the steepness of the protein gradient is determined by both genetic and nutritional factors, with three high-protein breadmaking cultivars being more responsive to the N treatment than a low-protein cultivar suitable for livestock feed. Nitrogen also affected the relative abundances of the three main classes of wheat prolamins: the sulfur-poor ω-gliadins showed the greatest response to nitrogen and increased evenly across the grain; the HMW subunits also increased in response to nitrogen but proportionally more in the outer layers of the starchy endosperm than near the core, while the sulfur-rich prolamins showed the opposite trend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated together to produce a solid oral dosage form. LBC of a model live bacterial vaccine and a probiotic were dried directly onto a cast film of enteric polymer. The effectiveness at protecting dried cells in a simulated gastric fluid (pH 2.0) depended on the composition of enteric polymer film used, with a blend of ethylcellulose plus Eudragit L100 55 providing greater protection from acid than Eudragit alone. However, although PFL made from blended polymers films completely released low molecular weight dye into intestinal conditions (pH 7.0), they failed to release LBC. In contrast, PFL made from Eudragit alone successfully protected dried probiotic or vaccine LBC from simulated gastric fluid for 2h, and subsequently released all viable cells within 60min of transfer into simulated intestinal fluid. Release kinetics could be controlled by modifying the lamination method.