41 resultados para LOW ASPECT RATIO
em CentAUR: Central Archive University of Reading - UK
Resumo:
A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono-δ-lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo-transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.
Resumo:
Data are presented from the EISCAT (European Incoherent Scatter (Facility)) CP-3-E experiment which show large increases in the auroral zone convection velocities (>2 km s−1) over a wide range of latitudes. These are larger than the estimated neutral thermal speed and allow a study of the plasma in a nonthermal state over a range of observing angles. Spectra are presented which show a well-defined central peak, consistent with an ion velocity distribution function which significantly departs from a Maxwellian form. As the aspect angle decreases, the central peak becomes less obvious. Simulated spectra, derived using theoretical expressions for the O+ ion velocity distribution function based on the generalized relaxation collision model, are compared with the observations and show good first-order, qualitative agreement. It is shown that ion temperatures derived from the observations, with the assumption of a Maxwellian distribution function, are an overestimate of the true ion temperature at large aspect angles and an underestimate at low aspect angles. The theoretical distribution functions have been included in the “standard” incoherent scatter radar analysis procedure, and attempts have been made to derive realistic ionospheric parameters from nonthermal plasma observations. If the expressions for the distribution function are extended to include mixed ion composition, a significant improvement is found in fitting some of the observed spectra, and estimates of the ion composition can be made. The non-Maxwellian analysis of the data revealed that the spectral shape distortion parameter, D*, was significantly higher in this case for molecular ions than for atomic ions in a thin height slab roughly 40 km thick. This would seem unlikely if the main molecular ions present were NO+. We therefore suggest that N2+ formed a significant proportion of the molecular ions present during these observations.
Resumo:
In this paper an equation is derived for the mean backscatter cross section of an ensemble of snowflakes at centimeter and millimeter wavelengths. It uses the Rayleigh–Gans approximation, which has previously been found to be applicable at these wavelengths due to the low density of snow aggregates. Although the internal structure of an individual snowflake is random and unpredictable, the authors find from simulations of the aggregation process that their structure is “self-similar” and can be described by a power law. This enables an analytic expression to be derived for the backscatter cross section of an ensemble of particles as a function of their maximum dimension in the direction of propagation of the radiation, the volume of ice they contain, a variable describing their mean shape, and two variables describing the shape of the power spectrum. The exponent of the power law is found to be −. In the case of 1-cm snowflakes observed by a 3.2-mm-wavelength radar, the backscatter is 40–100 times larger than that of a homogeneous ice–air spheroid with the same mass, size, and aspect ratio.
Resumo:
A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s.
Resumo:
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional- and shear-wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse-echo method. The measurements were made both in vacuum-dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin-impregnated polished thin sections, X-ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional- and shear-wave velocities (V-p and V-s, respectively) decrease with increasing porosity and that V-p decreases approximately twice as fast as V-s. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore-structure-dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot-Gassmann velocity values are greater than the measured velocity values due to the rock-fluid interaction. This is not accounted for in the Biot-Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time-average relationships overestimated the measured velocities even more than the Biot model.
Resumo:
Separation of stratified flow over a two-dimensional hill is inhibited or facilitated by acceleration or deceleration of the flow just outside the attached boundary layer. In this note, an expression is derived for this acceleration or deceleration in terms of streamline curvature and stratification. The expression is valid for linear as well as nonlinear deformation of the flow. For hills of vanishing aspect ratio a linear theory can be derived and a full regime diagram for separation can be constructed. For hills of finite aspect ratio scaling relationships can be derived that indicate the presence of a critical aspect ratio, proportional to the stratification, above which separation will occur as well as a second critical aspect ratio above which separation will always occur irrespective of stratification.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.
Resumo:
We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.
Resumo:
A finite element numerical study has been carried out on the isothermal flow of power law fluids in lid-driven cavities with axial throughflow. The effects of the tangential flow Reynolds number (Re-U), axial flow Reynolds number (Re-W), cavity aspect ratio and shear thinning property of the fluids on tangential and axial velocity distributions and the frictional pressure drop are studied. Where comparison is possible, very good agreement is found between current numerical results and published asymptotic and numerical results. For shear thinning materials in long thin cavities in the tangential flow dominated flow regime, the numerical results show that the frictional pressure drop lies between two extreme conditions, namely the results for duct flow and analytical results from lubrication theory. For shear thinning materials in a lid-driven cavity, the interaction between the tangential flow and axial flow is very complex because the flow is dependent on the flow Reynolds numbers and the ratio of the average axial velocity and the lid velocity. For both Newtonian and shear thinning fluids, the axial velocity peak is shifted and the frictional pressure drop is increased with increasing tangential flow Reynolds number. The results are highly relevant to industrial devices such as screw extruders and scraped surface heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.
Resumo:
The mean state, variability and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere vortex, are examined using 2-dimensional moment analysis and Extreme Value Theory (EVT). The use of moments as an analysis to ol gives rise to information about the vortex area, centroid latitude, aspect ratio and kurtosis. The application of EVT to these moment derived quantaties allows the extreme variability of the vortex to be assessed. The data used for this study is ECMWF ERA-40 potential vorticity fields on interpolated isentropic surfaces that range from 450K-1450K. Analyses show that the most extreme vortex variability occurs most commonly in late January and early February, consistent with when most planetary wave driving from the troposphere is observed. Composites around sudden stratospheric warming (SSW) events reveal that the moment diagnostics evolve in statistically different ways between vortex splitting events and vortex displacement events, in contrast to the traditional diagnostics. Histograms of the vortex diagnostics on the 850K (∼10hPa) surface over the 1958-2001 period are fitted with parametric distributions, and show that SSW events comprise the majority of data in the tails of the distributions. The distribution of each diagnostic is computed on various surfaces throughout the depth of the stratosphere, and shows that in general the vortex becomes more circular with higher filamentation at the upper levels. The Northern Hemisphere (NH) and Southern Hemisphere (SH) vortices are also compared through the analysis of their respective vortex diagnostics, and confirm that the SH vortex is less variable and lacks extreme events compared to the NH vortex. Finally extreme value theory is used to statistically mo del the vortex diagnostics and make inferences about the underlying dynamics of the polar vortices.
Resumo:
The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.
Resumo:
Interplanetary coronal mass ejections (ICMEs) are often observed to travel much faster than the ambient solar wind. If the relative speed between the two exceeds the fast magnetosonic velocity, then a shock wave will form. The Mach number and the shock standoff distance ahead of the ICME leading edge is measured to infer the vertical size of an ICME in a direction that is perpendicular to the solar wind flow. We analyze the shock standoff distance for 45 events varying between 0.5 AU and 5.5 AU in order to infer their physical dimensions. We find that the average ratio of the inferred vertical size to measured radial width, referred to as the aspect ratio, of an ICME is 2.8 ± 0.5. We also compare these results to the geometrical predictions from Paper I that forecast an aspect ratio between 3 and 6. The geometrical solution varies with heliocentric distance and appears to provide a theoretical maximum for the aspect ratio of ICMEs. The minimum aspect ratio appears to remain constant at 1 (i.e., a circular cross section) for all distances. These results suggest that possible distortions to the leading edge of ICMEs are frequent. But, these results may also indicate that the constants calculated in the empirical relationship correlating the different shock front need to be modified; or perhaps both distortions and a change in the empirical formulae are required.
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
Ring-closing olefin metathesis reactions are used to create intramolecularly ring closed peptides or inter-molecularly ring-closed peptide dimers based on a designed amyloid peptide sequence. The uncrosslinked peptide self-assembles into high aspect ratio nanotubes, however ring-closing leads to the formation of fibrillar and twisted/helical ribbon structures.