57 resultados para LIQUID-CRYSTAL POLYMERS
em CentAUR: Central Archive University of Reading - UK
Resumo:
A series of methacrylate-based side-chain liquid crystal polymers has been prepared with a range of molecular weights. For the high molecular weight polymers a smectic phase is observed with a very narrow nematic range; however, for low molecular weight polymers only the nematic phase is observed. A marked reduction in the glass transition temperature, TSN and TNI is observed with a reduction in the molecular weight. The orientational order parameters for these polymers in the liquid crystal phase have been determined using infra-red dichroism. It is found that the higher the molecular weight of the polymer, the greater is the threshold voltage of the electro-optic response and the lower the order parameter. The increase in the threshold voltage with increasing molecular weight may be related to the intrinsic curvature elasticity and hence to the coupling between the mesogenic units and the polymer backbone.
Resumo:
The levels of alignment of the mesogenic units and of the polymer backbone trajectory for polyacrylate based nematic side-chain liquid crystal polymers and elastomers were evaluated by using wide angle X-ray and small angle neutron scattering procedures. The X-ray scattering measurements show that substantial levels of preferred orientation of the mesogenic units may be introduced through magnetic fields for uncrosslinked polymers and through mechanical extension for liquid crystal elastomers. Small angle neutron scattering measurements show that for highly aligned samples an anisotropic polymer backbone trajectory is observed in which the envelope is slightly extended by ∼ 10% in the direction parallel to the axis of alignment of the mesogenic units. The sense of this coupling differs from that recorded for other uncrosslinked side-chain liquid crystal polymers. Possible mechanisms to account for this anisotropy and its relationship to the properties of liquid crystal elastomers are discussed. The observed deformation behaviour of the liquid crystal elastomer is non-affine and this appears to confirm the dominating influence of the liquid crystal order of the side chains on the mechanical properties of these novel networks.
Resumo:
The homologous series of side chain liquid crystal polymers, the poly[x-(4-methoxyazobenzene- 40-oxy)alkyl methacrylate]s, has been prepared in which the length of the flexible alkyl spacer has been varied from 3 to 11 methylene units. All the polymers exhibit liquid crystalline behaviour. The propyl and butyl members show exclusively nematic behaviour. The pentyl, hexyl, octyl and decyl members show a nematic and a smectic A phase while the heptyl, nonyl and undecyl homologues exhibit only a smectic A phase. The smectic A phase has been studied using X-ray diffraction and assigned as a smectic A1 phase in which the side chains are fully overlapped and the backbones are confined to lie between the smectic layers. For the nonyl member an incommensurate smectic phase is observed. The dependence of the transition temperatures on the length of the flexible spacer is understood in terms of the average shapes of the side chains.
Resumo:
X-ray Rheology is an experimental technique which uses time-ressolved x-ray scattering as probe of the molecular level structural reorganisation which accompanies flow. It provides quantitative information on the direction alignment and on the level of global orientation. This information is very helpful in interpreting the classic rheological data on liquid crystal polymers. In this research we use data obtained from a cellulose derivate which exhibits a thermotropic liquid crystal phase. We show how increased shear rates lead to a rapid rise in the global orientation and we related this to therories of flow in liquid crystal polymers from the literature. We show that the relaxation time is independent of the prior shear rate.
Resumo:
Side chain liquid crystal polymers and elastomers exhibit a rich phase behaviour which arises from the antagonistic influences of the entropically disordered polymer chain configuration and the long range orientational ordering of the mesogenic units. This competition arises since the natural macroscopic phase separation is inhibited by the inherent chemical connectivity of the system. At the heart of this connectivity is the spacer link and we consider here its influence on the phase behaviour. In particular we consider a series of elastomers in which the number of alkyl units in the spacer is systematically varied from 2 to 6. The lengthening of the coupling spacer is accompanied by an alternation of the sign of coupling between the polymer chain and the mesogenic unit. These results demonstrate the dominating influence of the so-called hinge effect in determining the phase behaviour. In addition to the alternation of the sign there is some decrease in the magnitude of the coupling with increasing spacer length.
Resumo:
A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.
Resumo:
A series of chain liquid crystalline copolymers of 4-cyanophenyl 4′-(6-methacryloyloxyhexyloxy)benzoate and 2-methacryloyloxyethyl β-(1-naphthyl)-propenoate were prepared by free radical polymerization. The corresponding polyacrylates could not be prepared in the same way and an alternative method was used for their preparation involving the synthesis of copolymers of the mesogenic monomer and 2-hydroxyethyl acrylate followed by treatment of the resulting polymers with β-(1-naphthyl)propenoyl chloride. The materials are of interest as photoactive liquid crystalline polymers. The effect of introducing a bulky nonmesogenic group into a liquid crystalline copolymer generally lowers the clearing temperature and raises Tg but also gives rise to contrasting phase behaviour in these two series of polymers. Polymethacrylates which show mesomorphism have sharp transitions and continue to exhibit a highly ordered smectic phase over the bulk of their liquid crystal range. Polyacrylates, on the other hand, exhibit a weakening and broadening-out of their thermal transitions consistent with a lowering of order. These results emphasize the effect of the polymer backbone on phase behaviour.
Resumo:
We report on the capillary flow behaviour of thermotropic liquid crystal mixtures containing 4-n-octyl-4'-cyanobiphenyl (8CB) and 4-n-pentyl-4'-cyanobiphenyl (5CB). The liquid crystal mixtures are studied in the Nematic (N) and Smectic (SA) phases at room temperature. Polarised optical microscopy (POM), rheology and simultaneous X-ray diffraction (XRD)/capillary flow experiments are performed to characterise the system. Polarised optical microscopy reveals a dramatic change in optical texture when the 5CB content is increased from 20 to 30% in the mixtures. X-ray diffraction results show that the system goes through a SA-N phase transition, such that the mixtures are smectic for 10-20% 5CB and nematic for 30-90% 5CB. Smectic mixtures flow with the layers aligned along the flow direction (mesogens perpendicular to flow) while nematic mixtures flow with the mesogens aligned in the flow direction. Simultaneous XRD/shear flow experiments show that the SA-N transition is independent of the flow rate in the range 1-6 ml min-1. The correlation length of the liquid crystal order decreases with increasing 5CB content. Rheology is used to prove that the correlation length behaviour is related to a reduction in the viscosity of the mixture.
Resumo:
Hierarchical ordering in a side group liquid crystal block copolymer is investigated by differential scanning calorimetry, polarized optical microscopy, small-angle X-ray and neutron scattering (SAXS and SANS) and transmission electron microscopy (TEM). A series of block copolymers with a range of compositions was prepared by atom transfer radical polymerization, comprising a polystyrene block and a poly(methyl methacrylate) block bearing chiral cholesteryl mesogens. Smectic ordering is observed as well as microphase separation of the block copolymer. Lamellar structures were observed for far larger volume fractions than for coil-coil copolymers (up to a volume fraction of liquid crystal block, f(LC) = 0.8). A sample with f(LC) = 0.86 exhibited a hexagonal-packed cylinder morphology, as confirmed by SAXS and TEM. The matrix comprised the liquid crystal block, with the mesogens forming smectic layers. For the liquid crystal homopolymer and samples with high f(LC), a smectic-smectic phase transition was observed below the clearing point. At low temperature, the smectic phase comprises coexisting domains with monolayer S-A,S-1 coexisting with interdigitated S-A,S-d domains. At high temperature a SA,1 phase is observed. This is the only structure observed for samples with lower f(LC). These unprecedented results point to the influence of block copolymer microphase separation on the smectic ordering.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.
Resumo:
WThe capillary flow alignment of the thermotropic liquid crystal 4-n-octyl-4′-cyanobiphenyl in the nematic and smectic phases is investigated using time-resolved synchrotron small-angle x-ray scattering. Samples were cooled from the isotropic phase to erase prior orientation. Upon cooling through the nematic phase under Poiseuille flow in a circular capillary, a transition from the alignment of mesogens along the flow direction to the alignment of layers along the flow direction (mesogens perpendicular to flow) appears to occur continuously at the cooling rate applied. The transition is centered on a temperature at which the Leslie viscosity coefficient α3 changes sign. The configuration with layers aligned along the flow direction is also observed in the smectic phase. The transition in the nematic phase on cooling has previously been ascribed to an aligning-nonaligning or tumbling transition. At high flow rates there is evidence for tumbling around an average alignment of layers along the flow direction. At lower flow rates this orientation is more clearly defined. The layer alignment is ascribed to surface-induced ordering propagating into the bulk of the capillary, an observation supported by the parallel alignment of layers observed for a static sample at low temperatures in the nematic phase.
Resumo:
This study is concerned with a series of acrylate based side-chain liquid crystalline (LC) polymers. Previous studies have shown that these LC polymers have a preference for parallel or perpendicular alignment with respect to the polymer chain which depends on the length of the coupling chain joining the mesogenic unit to the polymer backbone. On the other hand, the dielectric relaxation of these side-chain LC polymers shows a strong relaxation associated to the mesogenic unit dynamics. For samples with parallel alignment, it was found that the dielectric relaxation of the nematic is weaker and broader than the relaxation of the isotropic. By contrast, for samples with perpendicular alignment, the isotropic to nematic transition reduces the broadening the relaxation and increases the relaxation strength. These two features are more evident for samples with short coupling units for which the dielectric relaxation observed appears to be strongly coupled with the backbone dynamics.