34 resultados para LENGTH POLYMORPHISM ANALYSIS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Amplified fragment length polymorphism (AFLP) genetic fingerprinting of 14 accessions of Chara curta and Chara aspera Willd., sampled across a range of habitats and morphologies in Britain, suggests that these taxa are part of the variation within a single species complex. Two primer combinations generating 397 fragments (97% of which were polymorphic), analysed by Jaccard's similarity coefficient and principal co-ordinate analysis, did not recover groups which reflect the current taxonomy. By contrast with the genetic study, a Gower general similarity coefficient and principal co-ordinate analysis of 52 morphological characters recovered the currently recognized species groups. A Mantel test showed no significant correlation between the genetic data and the morphological data, supporting the hypothesis that phenotypic variability in Chara L. is either to some extent environmentally induced or represents developmental stages. Implications for the conservation status of C. curta in Britain are discussed. (c) 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155, 467-476.
Resumo:
A technique for subtyping Camplobacter jejuni isolates has been developed by using the restriction fragment length polymorphism (Rnp) of polymerase chain reaction (PCR) products of the fluA and flaB genes. The technique was validated by using strains representing 28 serotypes of C jejuni and it may also be applied to C coli. From these strains 12 distinct RFLP profiles were observed but there was no direct relationship between the RFLP profile and the serotype. One hundred and thirty-five campylobacter isolates from 15 geographically distinct broiler flocks were investigated. All the isolates could be subtyped by using the RFLP method. Isolates from most of the flocks had a single RFLP profile despite data indicating that several serotypes were involved. Although it is possible that further restriction analysis may have demonstrated profile variations in these strains, it is more likely that antigenic variation can occur within genotypically related campylobacters. As a result, serotyping may give conflicting information for veterinary epidemiological purposes. This RFLP typing scheme appears to provide a suitable tool for the investigation of the sources and routes of transmission of campylobacters in chickens.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Resumo:
It is known that Escherichia coli K-12 is cryptic (Phn(-)) for utilization of methyl phosphonate (MePn) and that Phn(+) variants can be selected for growth on MePn as the sole P source. Variants arise from deletion via a possible slip strand mechanism of one of three direct 8-bp repeat sequences in phnE, which restores function to a component of a putative ABC type transporter. Here we show that Phn(+) variants are present at the surprisingly high frequency of >10(-2) in K-12 strains. Amplified-fragment length polymorphism analysis was used to monitor instability in phnE in various strains growing under different conditions. This revealed that, once selection for growth on MePn is removed, Phn(+) revertants reappear and accumulate at high levels through reinsertion of the 8-bp repeat element sequence. It appears that, in K-12, phnE contains a high-frequency reversible gene switch, producing phase variation which either allows ("on" form) or blocks ("off" form) MePn utilization. The switch can also block usage of other metabolizable alkyl phosphonates, including the naturally occurring 2-aminoethylphosphonate. All K-12 strains, obtained from collections, appear in the "off" form even when bearing mutations in mutS, mutD, or dnaQ which are known to enhance slip strand events between repetitive sequences. The ability to inactivate the phnE gene appears to be unique to K-12 strains since the B strain is naturally Phn(+) and lacks the inactivating 8-bp insertion in phnE, as do important pathogenic strains for which genome sequences are known and also strains isolated recently from environmental sources.
Resumo:
Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2 × 102 to 1.4 × 103 per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of “Candidatus Cardinium hertigii” and as a separate novel cluster.
Resumo:
Following a pressure treatment of a clonal Staphylococcus aureus culture with 400 MPa for 30 min, piezotolerant variants were isolated. Among 21 randomly selected survivors, 9 were piezotolerant and all formed small colonies on several agar media. The majority of the isolates showed increased thermotolerance, impaired growth, and reduced antibiotic resistance compared to the wild type. However, several nonpiezotolerant isolates also demonstrated impaired growth and the small-colony phenotype. In agglutination tests for the detection of protein A and fibrinogen, the piezotolerant variants showed weaker agglutination reactions than the wild type and the other isolates. All variants also showed defective production of the typical S. aureus golden color, a characteristic which has previously been linked with virulence. They were also less able to invade intestinal epithelial cells than the wild type. These S. aureus variants showed phenotypic similarities to previously isolated Listeria monocytogenes piezotolerant mutants that contained mutations in ctsR. Because of these similarities, possible alterations in the ctsR hypermutable regions of the S. aureus variants were investigated through amplified fragment length polymorphism analysis. No mutations were identified, and subsequently we sequenced the ctsR and hrcA genes of three representative variants, finding no mutations. This work demonstrates that S. aureus probably possesses a strategy resulting in an abundance of multiple-stressresistant variants within clonal populations. This strategy, however, seems to involve genes and regulatory mechanisms different from those previously reported for L. monocytogenes. We are in the process of identifying these mechanisms.
Resumo:
The prebiotic lactulose, a probiotic strain of Lactobacillus plantarum (L. plantarum) and a synbiotic combination of these two agents were evaluated as growth promoters in 25–39-day old commercial weaning pigs. Ninety-six weaning pigs were allocated into 32 pens, taking initial weight into account, and distributed into four groups as follows: a control diet (CTR), the same diet supplemented daily with L. plantarum (109 CFU/mL sprayed on top; 20 mL/pig) (LPN); 10 g/kg lactulose (LAC) or a combination of both treatments (SYN). At day 14, eight piglets from each group were euthanized and proximal colon digesta was sampled for luminal pH, short-chain fatty acids (SCFA) and lactic acid concentrations. Deoxyribonucleic acid was extracted from colonic digesta and the microbial community was profiled by terminal restriction fragment length polymorphism analysis (T-RFLP) and qPCR. Blood urea nitrogen (BUN) and acute-phase proteins (Pig-MAP) were measured. Lactulose treatment (LAC) improved feed intake (P<0.05), average daily gain (P<0.01), feed:gain ratio (P<0.05) and reduced BUN (P<0.01). Both, LAC and LPN treatment, decreased the Enterobacteriaceae:Lactobacillus spp. ratio in the colonic luminal contents (P<0.05). Moreover LPN treatment promoted a decrease in the percentage of branched fatty acids (P<0.01) suggesting a reduction in proteolytic microbial activity. Microbial profiling of colonic luminal contents by T-RFLP revealed changes in some microbial species. Terminal restriction fragments (TRFs) compatible with Bifidobacterium thermoacidophilum were more frequently detected in experimental diets compared to CTR (P<0.05). Pigs receiving SYN diet demonstrated the combined positive effects of individual LAC and LPN treatment although we were not able to show a specific increase in the probiotic strain with the inclusion of lactulose. Collectively, these data suggest the combination of lactulose and L. plantarum acts as a complementary synbiotic, but not as a synergistic combination.
Resumo:
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
Resumo:
Recombination in Poliovirus vaccine strains is a very frequent phenomenon. In this report 23 polio/Sabin strains isolated from healthy vaccinees or from VAPP patients after OPV administration, were investigated in order to identify recombination sites from 2C to 3D regions of the poliovirus genome. RT-PCR, followed by Restriction Fragment Length Polymorphism (RFLP) screening analysis were applied in four distant genomic regions (5' UTR, VP1, 2C and 3C-3D) in order to detect any putative recombinant. The detected recombinants were sequenced from 2C to the end of the genome (3' UTR) and the exact recombination sites were determined with computational analysis. Five of the 23 isolated strains were recombinant in one genomic region, two of them in 2C, isolates EP16:S3/S2, EP23:S3/S1, two in 3D isolates EP6:S2/S1, EP12:S2/S1 and one in 3A isolate EP9:S2/Sl. Point mutations were found in strains EP3, EP6, EP9 and EP12. Recombination specific types and sites re-occurrence along with point mutations are discussed concerning the polioviruses evolution.
Resumo:
BACKGROUND: The aim of this study was to evaluate the association of polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene and peroxisome proliferators-activated receptor gamma co-activator 1 alpha (PPARGC1A) gene with diabetic nephropathy (DN) in Asian Indians. METHODS: Six common polymorphisms, 3 of the PPARG gene [-1279G/A, Pro12Ala, and His478His (C/T)] and 3 of the PPARGC1A gene (Thr394Thr, Gly482Ser, and +A2962G) were studied in 571 normal glucose-tolerant (NGT) subjects, 255 type 2 diabetic (T2D) subjects without nephropathy, and 141 DN subjects. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Logistic regression analysis was performed to assess the covariables associated with DN. RESULTS: Among the 6 polymorphisms examined, only the Gly482Ser of the PPARGC1A gene was significantly associated with DN. The genotype frequency of Ser/Ser genotype of the PPARGC1A gene was 8.8% (50/571) in NGT subjects, 7.8% (20/255) in T2D subjects, and 29.8% (42/141) in DN subjects. The odds ratios (ORs) for DN for the susceptible Gly/Ser and Ser/Ser genotype after adjusting for age, sex, body mass index, and duration of diabetes were 2.14 [95% confidence interval (CI), 1.23-3.72; P = 0.007] and 8.01 (95% CI, 3.89-16.47; P < 0.001), respectively. The unadjusted OR for DN for the XA genotype of the Thr394Thr polymorphism was 1.87 (95% CI, 1.20-2.92; P = 0.006) compared to T2D subjects. However, the significance was lost (P = 0.061) when adjusted for age, sex, BMI, and duration of diabetes. The +A2962G of PPARGC1A and the 3 polymorphisms of PPARG were not associated with DN. CONCLUSION: The Gly482Ser polymorphism of the PPARGC1A gene is associated with DN in Asian Indians.
Resumo:
The aim of this study was to determine whether geographical differences impact the composition of bacterial communities present in the airways of cystic fibrosis (CF) patients attending CF centers in the United States or United Kingdom. Thirty-eight patients were matched on the basis of clinical parameters into 19 pairs comprised of one U.S. and one United Kingdom patient. Analysis was performed to determine what, if any, bacterial correlates could be identified. Two culture-independent strategies were used: terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA clone sequencing. Overall, 73 different terminal restriction fragment lengths were detected, ranging from 2 to 10 for U.S. and 2 to 15 for United Kingdom patients. The statistical analysis of T-RFLP data indicated that patient pairing was successful and revealed substantial transatlantic similarities in the bacterial communities. A small number of bands was present in the vast majority of patients in both locations, indicating that these are species common to the CF lung. Clone sequence analysis also revealed that a number of species not traditionally associated with the CF lung were present in both sample groups. The species number per sample was similar, but differences in species presence were observed between sample groups. Cluster analysis revealed geographical differences in bacterial presence and relative species abundance. Overall, the U.S. samples showed tighter clustering with each other compared to that of United Kingdom samples, which may reflect the lower diversity detected in the U.S. sample group. The impact of cross-infection and biogeography is considered, and the implications for treating CF lung infections also are discussed.
Resumo:
Background and Aims Highly variable, yet possibly convergent, morphology and lack of sequence variation have severely hindered production of a robust phylogenetic framework for the genus Ophrys. The aim of this study is to produce this framework as a basis for more rigorous species delimitation and conservation recommendations. Methods Nuclear and plastid DNA sequencing and amplified fragment length polymorphism (AFLP) were performed on 85 accessions of Ophrys, spanning the full range of species aggregates currently recognized. Data were analysed using a combination of parsimony and Bayesian tree-building techniques and by principal coordinates analysis. Key Results Complementary phylogenetic analyses and ordinations using nuclear, plastid and AFLP datasets identify ten genetically distinct groups (six robust) within the genus that may in turn be grouped into three sections (treated as subgenera by some authors). Additionally, genetic evidence is provided for a close relationship between the O. tenthredinifera, O. bombyliflora and O. speculum groups. The combination of these analytical techniques provides new insights into Ophrys systematics, notably recognition of the novel O. umbilicata group. Conclusions Heterogeneous copies of the nuclear ITS region show that some putative Ophrys species arose through hybridization rather than divergent speciation. The supposedly highly specific pseudocopulatory pollination syndrome of Ophrys is demonstrably 'leaky', suggesting that the genus has been substantially over-divided at the species level.
Resumo:
Termites are an important component of tropical soil communities and have a significant affect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physico-chemical conditions and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and Terminal-restriction Fragment Length Polymorphism (T-RFLP) analysis to examine methanogenic Archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If they are strictly vertically inherited, then MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus or Rice Cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities but these may represent transient populations in either guts or soil. Our data does not support the hypothesis that termite gut MA are derived from their food soil but also does not support a purely vertical transmission of gut microflora.
Resumo:
Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methanogenic archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If these MA are strictly vertically inherited, then the MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus, or rice cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities, but these may represent transient populations in either guts or soil. Our data do not support the hypothesis that termite gut MA are derived from their food-soil but also do not support a purely vertical transmission of gut microflora.
Resumo:
The timing of flag leaf senescence (FLS) is an important determinant of yield under stress and optimal environments. A doubled haploid population derived from crossing the photo period-sensitive variety Beaver,with the photo period-insensitive variety Soissons, varied significantly for this trait, measured as the percent green flag leaf area remaining at 14 days and 35 days after anthesis. This trait also showed a significantly positive correlation with yield under variable environmental regimes. QTL analysis based on a genetic map derived from 48 doubled haploid lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers, revealed the genetic control of this trait. The coincidence of QTL for senescence on chromosomes 2B and 2D under drought-stressed and optimal environments, respectively, indicate a complex genetic mechanism of this trait involving the re-mobilisation of resources from the source to the sink during senescence.